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Abstract
Recent studies of electromagnetic response at microwave- and millimetre-
wave frequencies of the high-temperature cuprate superconductors and related
materials are reviewed, with special interest in the experimental papers. These
include the superfluid response in the superconducting state, quasi-particle
responses below Tc, and characteristic charge excitations in related materials.
We also discuss the electronic structure in the vortex core and superconducting
fluctuation.
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1. Introduction

The ac conductivity of materials includes a mine of important information on the electronic
state and dynamics of electrons in those materials. Conductivity at optical frequencies reflects
various kinds of elementary charge excitations. Experimental techniques and theoretical
analyses have been well established for physics in the optical region [1, 2]. Recently, much
interest has been taken in phenomena at lower frequencies of microwave- and millimetre-wave
regions. A typical example is the collective charge excitation by quantum condensates, such as
charge-density waves (CDWs) and spin-density waves (SDWs), exhibiting a large resonance
in these frequency regions, together with a very large dielectric function [3]. Another example
is the charge excitation in high-Tc cuprate superconductors. It is well established that in
these materials the physical properties depend strongly on carrier doping [4]. In the phase
diagram of temperature versus doping, various phases exist (or sometimes coexist), such as
antiferromagnets, high-Tc superconductors, ‘strange’ metals, normal metals, etc. Even in the
normal state of the ‘strange’ metals, a pseudogap opens at temperatures far above Tc for some
range of doping, particularly for low doping. In the pseudogapped region, it is argued that
various types of large fluctuations of charge and spin might contribute to physical properties.
Thus, some of these fluctuations should show up in the ac conductivity at low energies.
Recently, it has been suggested that the phase diagram of the cuprate superconductors can be
interpreted from the more general point of view of quantum criticality [5]. This interpretation
opens a possibility that new types of low-energy charge excitations are possible in strongly
correlated materials as rather common phenomena. Therefore, it has become more and more
important to investigate the ac conductivity in the microwave- to millimetre-wave frequency
region.

In conventional superconductors, the microwave conductivity measurement (or the surface
impedance measurement) has been one of the most popular tools to investigate properties of
superconductors [6–8]. Since the discovery of high-temperature superconductivity in cuprates,
the charge response at microwave- and millimetre-wave frequencies has been investigated more
extensively in the superconducting state [9]. It gives detailed information on quasiparticle
(QP) dynamics in the superconducting state. In particular, different from optical studies, this
can provide detailed data of the charge response as a function of temperature. The reactive
response gives information on the superfluid density. Detailed measurement of the temperature
and magnetic-field dependence of the superfluid density gives information on the symmetry
of the condensate wavefunction. Measurements at various frequencies at temperatures close
to the superconducting transition temperature, Tc, provide information on the fluctuation of
superconductivity. Since it is expected, in some theories, that the superconductivity fluctuation
in cuprates changes largely as a function of hole concentration, it is interesting to discuss
superconductivity fluctuation as a function of doping.
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When magnetic field is applied to a superconductor, quantized magnetic vortices are
formed, which respond to the alternating electromagnetic field. The complex impedance at
microwave frequencies contains information on the pinning and viscosity of the vortex. In
particular, the latter is closely related to the electronic structure of the quasiparticles (QPs) in
the vortex core [10, 11].

In this article, we will give a brief review of the ac conductivity measurement in
microwave- and millimetre-wave frequencies of cuprate based materials including the high-Tc

superconductors, with special interest in the potential variety of this technique to explore the
diverging aspects of charge excitation in solids, and will try to show how these techniques play
important roles in understanding the physics of the above-mentioned issues.

The organization of the paper is as follows. In section 2, we will describe basic concepts
important for understanding the contents of the following sections. In section 3, we discuss
experimental techniques of the microwave conductivity measurement briefly. Because of the
space limitation, we will mainly focus on the measurement techniques on bulk materials. There,
we also focus on the underlying problems in the data analysis. In section 4, we will discuss the
electromagnetic response of the high-Tc cuprate superconductors. Since an excellent review
has already been written on this subject by Bonn and Hardy [9] in 1996, we will weight the
results published after this article, and try to make this review complimentary to [9]. Section 5
will also be devoted to the topics related to the high-Tc superconductivity, but those in the
presence of the magnetic field: the mixed state. In this section, we discuss the QP electronic
structure in the vortex core, and will show how the microwave techniques play a crucial role for
this subject. This is another issue that was not discussed in [9]. In section 6, we will focus on
the research that tries to catch the dynamics of the collective charge excitations specific to the
strongly correlated materials. There, we will discuss mainly studies concerning the dynamics
of charge ‘stripes’, and ac conductivity of a spin ladder material. Finally, in section 7, we will
summarize this topical review article.

Since the range of topics that microwave techniques covers is vast, it is impossible to give
a complete and a self-contained review of all these subjects. Readers are strongly encouraged
to read other reviews and related papers, cited at the relevant pages in this topical review article.

2. Complex conductivity and surface impedance of material

2.1. Complex conductivity

The complex electrical conductivity tensor at angular frequency ω, σ̃ (ω), is defined as

j(ω) = σ̃ (ω)E(ω), (1)

where j(ω) and E(ω) are the current density and the electric field at the same frequency,
respectively. When E is small, usually σ̃ is independent of E (linear response). As will be
discussed later, sometimes the nonlinearity becomes important.

In this article, we treat σ as diagonal, since we do not discuss the Hall effects or properties
of materials with particularly low symmetry. Then, σ̃ is diagonal, and we will drop the tilde
mark below unless there is a possibility of confusion. For materials such as high-Tc cuprates, the
electrical properties are anisotropic. If necessary, we will use subscripts (or superscripts) such
as σa , σb, and σc, representing the diagonal components in the corresponding crystallographic
directions. We also use the expression σab, representing the conductivity for the current in the
CuO2 plane (the ab plane).

The complex dielectric constant, ε(ω), is related to the complex conductivity, σ(ω), as

ε(ω) ≡ ε1(ω) − iε2(ω) ≡ (σ (ω) − σdc)/iω ≡ (σ1(ω) + iσ2(ω) − σdc)/iω, (2)
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where dc conductivity, σdc, is subtracted for the definition of ε(ω). The real and imaginary
parts (denoted by the subscripts 1 and 2, respectively) of σ and ε are related to each other
through the Kramers–Kronig relation.

In general, the current density and the electric field are dependent on space as well as time,
as j(r, t) and E(r, t). As a result, j(r, t) is expressed as a convolution as follows:

j(r, t) =
∫ t

−∞

∫
σ(r − r′, t − t ′)E(r′, t ′) dr′ dt ′. (3)

This is the nonlocal response because the conductivity and the electric field at the point r′ near
the point r can also contribute to the current density at the point r. The Fourier transformation
leads to the relation which is dependent on the wavenumber,q, and the frequency,ω, as follows:

j(q, ω) = σ(q, ω)E(q, ω). (4)

In nonmagnetic metals, the characteristic length scale of the spatial change of the
electromagnetic field is the skin depth,

δ ≡
√

2

µ0σ1ω
, (5)

(µ0 is the permeability of vacuum, σ1 is the real part of the conductivity, and ω is the angular
frequency). When δ is sufficiently larger than the mean free path, �, of the electrons, the
spatial change of the electromagnetic field around the point r is negligibly small. Thus, E in
the integrand of equation (3) can be put outside the spatial integral,and the resultant relationship
is

j(r, t) =
∫ t

−∞
σ(r, t − t ′)E(r, t ′) dt ′. (6)

This is called the local response. For most metals including high-Tc cuprates, δ is larger
than � even at microwave frequencies, and the local response concept is valid. Only for
ultra-pure metals with � larger than δ does the nonlocality become important. Another
important exception is the so-called type-I superconductor, which will be discussed later.
Fourier transformation of equation (6) gives equation (1).

2.2. Surface impedance: what do we measure?

In extracting conductivity of a material, the most important parameter is the skin depth, δ.
When δ is much smaller than the typical spatial dimension of the sample, L (δ � L), what is
measured directly is the complex surface impedance, Zs, defined as

Zs ≡ Rs − iXs ≡ E‖/H‖ = E‖
/ ∫ 0

−∞
j(z) dz. (7)

Here, Rs and Xs are the surface resistance and the surface reactance, respectively, E‖ and
H‖ represent the components of the electric and magnetic fields parallel to the surface of the
sample, and the integration of the current density j is made in the direction perpendicular to
the surface. The coordinate z represents the distance from the surface in this direction. In the
local limit, Zs can be represented by the complex conductivity as

Zs =
[

iµ0ω

σ1 + iσ2

]1/2

. (8)

Thus, by measuring the complex Zs, we can deduce the complex σ , which should be compared
to the theoretically calculated σ(ω) in various models.
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In the opposite limit, where δ � L, the electromagnetic field penetrates into the whole
volume of the sample, and the complex conductivity (or the complex dielectric constant) can be
obtained directly from the measured quantities. For intermediate cases between the above two
extremes, there is no well established method for extracting conductivity from the measured
quantities, even now. Therefore, measurements of materials whose conductivity (or dielectric
function) changes by large orders of magnitude, such as the ones that undergo metal-to-insulator
transition, is a rather challenging problem. Another difficult situation emerges when the real
part of the dielectric function, ε1, is very large. These will be discussed in section 3.2 briefly.

When one measures the microwave properties in the ab planes of the high-Tc cuprate
single crystals, the situation that δ � L is almost always satisfied both in the normal and
superconducting states. Therefore, the surface impedance measurements have mainly been
performed. However, when one measures the c-axis properties perpendicular to the ab planes,
careful considerations are required, since δ can be comparable to L, as will be discussed in
section 4.4. Since the skin depth depends on frequency, this should always be recalled during
the measurement. In particular, it has serious influences on the broadband measurement where
the frequency is swept continuously, and also on the measurement of materials whose electrical
conductivity is strongly temperature dependent.

In the next section, we describe various experimental techniques developed for the
measurement of the surface impedance, Zs, or the complex conductivity, σ , of the high-Tc

superconductors and related materials. Problems in the data analysis process will also be
discussed in detail.

3. Experimental aspects

3.1. Experimental techniques

Most of the high-Tc cuprate superconductors and related materials have very anisotropic
electronic properties. Thus, single crystals or highly oriented, single-crystalline films are
necessary to explore the physical properties2. In addition, high-quality single crystals are
only obtainable with smaller dimensions than 1 mm. This makes the application of many
measurement methods used for conventional superconductors to these new materials very
difficult. In this subsection, we focus on the important developments of the measurement
methods of Zs using resonant or nonresonant techniques. Many of the important results
discussed after this section would not be obtained without technical improvements reviewed
in this section. In many cases, the cavity perturbation method using a resonator with high
sensitivity has often still been used, since it is favourable for small single crystals, and it can
measure Zs (or σ ) as a function of temperature and magnetic field precisely. The nonresonant
broadband method can be used for obtaining σ as a function of the microwave frequency. This
method is complementary to the resonant method, since the resonant method is performed at
fixed frequencies. However, the microwave broadband method performed at low temperatures
is technically challenging even now, which will be mentioned below.

3.1.1. Methods using resonators. In the cavity perturbation method [19–21], one measures
the change of the resonance frequency f , � f , and that of the quality factor Q, �Q, caused by
2 Panagopoulos et al published many results on the penetration depth of high-Tc superconductors [16, 17] using
magnetically aligned powders, based on the analysis [18] of ac magnetization data. A merit of this method is that
it can determine the absolute magnitude of the penetration depth. In their analysis, however, they assumed the
distribution of spherical small particles, which is unrealistic. Judging from the result, this method might be useful in
discussing a crude tendency of the magnitude of the penetration depth as a function of carrier concentration, materials,
etc.
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Figure 1. (a) The electromagnetic field of a TE011 cylindrical cavity resonator. (b) A cavity
resonator in the ‘hot-finger’ method.

the insertion of the sample. The complex conductivity, σ (=σ1 + iσ2), and surface impedance,
Zs (=Rs − iXs), can be obtained from these � f and �Q. In the skin depth regime (SDR),
where δ � L, the surface resistance, Rs, and the surface reactance, Xs, are known to be
proportional to �Q and � f , respectively. In particular, for superconductors, Xs = µ0ωλ,
where λ is the so-called penetration depth. Thus, � f measurement directly gives information
on λ. It should be noted, however, that � f measurement cannot give an absolute magnitude
of λ. It gives only the change in λ, �λ.

A circular cylindrical cavity resonator, which is made of oxygen free copper (OFC)
and operated in TE011 mode, has often been used in the frequency range between 3 and
150 GHz [20]. Because of the small dimensions of the single crystal, the sample is typically
inserted into the centre of the cavity resonator, which corresponds to the antinode of the
microwave magnetic field (‘enclosed perturbation’), as shown in figure 1(a).

An important development is the so-called ‘hot-finger’ technique, as shown in
figure 1(b) [22, 23]. By using this technique, the sample is thermally isolated from the
resonator, and is heated up to at least 200 K without changing the resonator temperature. This
is particularly favourable for the measurements of high-Tc cuprates, where it is necessary to
vary the temperature for a wide range,since the large temperature-dependent background of the
cavity can be removed. Another important progress is the use of a superconducting resonator
with very high sensitivity, where the inner wall of the cavity is coated by Pb (or Pb:Sn alloy),
or the cavity is made of Nb [22, 23]. By maintaining it at an ambient temperature of 4.2 K,
or by pumping the 4He bath down to ∼1.5 K, Q values reach ∼106–108, which can detect
Rs of the order of a few µ�. In fact, many groups have used this superconducting resonator
for the precise measurements of Zs(T ) in the Meissner state of various high-Tc cuprates,
as will be discussed in section 4. In the lower-frequency region (∼0.3–3 GHz), a split-ring
resonator [24, 25] or a loop-gap resonator [26] is effective, since the cylindrical cavity resonator
at these frequencies is too large to be put on the cryostat. The small size and the excellent
field homogeneity of this resonator are favourable for the increase of filling factor, whereas
the stability of the resonator is limited. In particular, a superconducting loop-gap resonator
with a special assembly that minimizes the motion of the sample has been developed by Hardy
et al [26], in order to measure the magnetic penetration depth, λ (=Xs/µ0ω), precisely. A
resonant LC circuit coupled with a tunnel diode (of an FET) operating at ∼10 MHz has also
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been used for the precise measurement of λ(T ) [27–31]. This LC circuit can also be operated
under strong magnetic field, where the superconducting resonator cannot be operated.

In the cavity perturbation method, it is crucially important that reproducibility and stability
are achieved between the measurements with and without the sample, since the net difference
between the data in these two measurements reflects the intrinsic response of the sample.
Typical sources giving rise to irreproducible and unstable operation have been discussed by
Dressel et al [21]. For example, the use of any exchange gas to control the thermal link between
the sample and the cryogen will have a serious influence on � f , since even a slight change of
the pressure of the exchange gas gives rise to a large frequency shift of the high-Q resonator.
It is also effective to put the cavity resonator inside the vacuum can [32, 33], since a slight
thermal expansion of the cavity immersed into the cryogen gives rise to � f , sensitive to the
level of the helium bath. With an OFC cavity [32] and the superconducting Nb cavity [33] put
in the vacuum can, measurements down to 0.3–1 K were performed.

For high-Tc thin films, various types of resonators have often been used to measure Rs

and λ, such as a parallel-plate resonator [34], a microstrip resonator [35], and a dielectric
resonator [36], rather than the cylindrical cavity resonator. The application of these resonators
to the measurements of λ have been reviewed briefly by Bonn and Hardy [9]. In many of
these cases, the hot-finger technique cannot be available. Thus, it is necessary to calibrate the
large temperature-dependent background of the thin-film resonator. To avoid this difficulty,
the temperature dependence of λ of high-Tc thin films has been measured by using the two-coil
mutual inductance method [37].

In the actual experiments, it is also important to develop a highly accurate and real-
time method to determine Q and f of the resonator for the measured data points. Petersan
and Anlage have compared several different methods and concluded that the nonlinear least-
squares fit to the phase versus frequency is the most accurate and precise method when the S/N
ratio is large, while the nonlinear least-squares fit to a Lorentzian curve is better for noisier
data [38]. However, in general, the nonlinear least-squares fit requires iterated calculations
and test processes for numerical convergence, which make the fitting algorithm very time
consuming and more complicated. Recently, Inoue et al developed a new method, which
contains only the linear least-squares fit to the complex transmission data [39]. This method,
which is called the ‘complex linear regression method’, has a very high accuracy for the high-Q
resonator with large S/N ratio.

3.1.2. Nonresonant methods. The nonresonant bolometric detection can resolve the
microwave loss smaller than 0.1 nW. This method was originally used for superconducting Al
to explore the superconducting gap frequency [7]. Moreover, for tiny crystals of the cuprate
superconductors it was found to be very effective [40]. This technique has recently been applied
to some studies investigating the frequency-dependent surface resistance (0.6–20 GHz) in the
Meissner state [41, 42] (see section 4.3) and the Josephson plasma resonance in the Meissner
and vortex states [44, 43] (see section 4.4). In particular, Turner et al [41, 42] have succeeded
in improving the sensitivity of bolometric detection with a resolution of 1.5 pW at 1.3 K,
corresponding to �Rs of ∼1 µ� for a 1 × 1 mm2 platelet crystal.

To obtain the complex response, on the other hand, the so-called broadband technique
using a vector network analyser is indispensable. For cuprate superconductors, it has been
developed by Booth et al [45]. In this technique, σ or Zs is obtained from the complex
reflection (or transmission) coefficients as a function of the microwave frequency (typically 45
to 20 GHz). This reflection technique has been applied to the study of the dynamical fluctuation
conductivity near Tc [46] (see section 4.5). One of the technical difficulties in this method is the
accurate calibration to remove the systematic errors of the transmission line system, since such
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errors are generally dependent on temperature. In one-port reflection geometry, the systematic
imperfection of the measurement system is generally described by three error coefficients
(12 parameters are required in two-port transmission geometry). At room temperature, they
are determined at each frequency by using the three kinds of calibration standard which are
commercially available. However, the calibration in a cryogenic system is much more difficult,
since commercial calibration standards are no longer characterized at low temperatures, and
the necessary use of long and lossy coaxial cable makes the transmission in the high-frequency
region worse and nonreproducible. Booth et al performed calibration as follows. First they
performed calibration only at room temperature, using the commercial standards. Next, they
assumed that only one of the error coefficients was temperature dependent, and calibrated the
system by measuring a short (or superconductor) at the lowest temperature. Tosoratti et al
proposed a revised method for the calbration analysis [47]. However, even in this method, the
calibration measurement was not performed at each temperature. Recently, Kitano et al [48]
succeeded in performing calibration at any temperature down to ∼10 K in the frequency range
from 45 MHz to 12 GHz, by applying a new calibration method proposed by Stutzman et al
[49]. This method of calibration is better because there is almost no assumption on these error
parameters, and all of these can be determined only by experiments at all temperatures.

The advantage of this broadband method is that the complex response can be obtained,
while the disadvantage is a poor sensitivity compared to other bolometric or resonant
techniques. Unfortunately, the sensitivity of the current vector network analyser is insufficient
to detect the small loss of Rs in the superconducting state. Thus, for instance, for
superconductors, measurements suitable for this techniques are limited to the ones close to Tc,
or the ones in the mixed state. Further improvement should be achieved in a future study.

3.2. Problems in data analysis process

As was described in the previous section, the enclosed cavity perturbation method (including
the hot-finger technique) has often been used for obtaining the complex conductivity, σ , of the
high-Tc cuprates and the related materials. In this subsection, we focus on some problems in
the data analysis process of this method. Many of them are also common to the analyses in
other resonant or nonresonant techniques.

In the cavity perturbation method, the change due to the insertion of the small sample is
often described by the reduced complex frequency shift, �ω̂/ω0, defined as

�ω̂

ω0
≡ � f

f0
− i�

(
1

2Q

)
, (9)

where � represents the difference between the cavity resonator with the sample (the sample-
loaded cavity) and the one without the sample (the empty cavity), and f0 (=ω0/2π) is the
resonant frequency of the empty cavity. The data analysis in this method is an inverse
eigenvalue problem of Maxwell’s equations, and cannot be solved in general [19]. Thus,
the procedure for obtaining σ depends largely on the relationship between the complex
wavenumber k̂ (≡ω0

√
µ0ε) in the sample, the mean free path �, and the dimension L of

the sample.
Fortunately, in most of the high-Tc cuprate superconductors except for some materials

discussed in section 6, the real part of k̂ is negligibly small in the microwave region. In
addition, the relation in the local electrodynamics can be applied to both the in-plane and
interplane electrodynamics, since the mean free path � is much smaller than δ (corresponding
to the imaginary part of 1/k̂) in both cases. Thus, σ can be obtained straightforwardly from
Zs (=Rs − iXs) data using equation (8).
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In the skin depth regime (SDR), where δ � L, �ω̂/ω0 is simply described as follows:[
�ω̂

ω0

]
SDR

= C − iG Zs, (10)

where C and G are a metallic shift (the frequency shift caused by a perfect conductor) and
a resonator constant, respectively, which are geometrically determined by the shape of the
sample. For a general spheroid, C and G can be calculated [19]. However, it is almost
impossible to estimate them easily for a platelet single crystal of high-Tc cuprates even by a
numerical calculation, because of the highly anisotropic properties. Rather, they have been
determined experimentally from the normal-state dc conductivity, σdc, of the same crystal,
utilizing the Hagen–Rubens relation (σ2 � σ1 	 σdc), which is valid for the low-frequency
region (ωτ � 1; τ is the QP scattering time) in an ordinary Drude metal. In substituting this
relation into equation (8), we obtain

Rs = Xs = √
µ0ω0/2σdc. (11)

Thus, C is determined by equating �(1/2Q) to C−�f /f 0, while G is determined by comparing
the measured �(1/2Q) with the Rs calculated by equation (11) using σdc and ω0. Indeed, this
method has often been used for the analyses of the high-Tc cuprate superconductors [9] and
some organic superconductors [21]. As was also emphasized by Bonn and Hardy [9], in the
enclosed cavity perturbation, the most appropriate reference to determine C and G in the SDR
should be a perfect conductor with the same dimensions as the sample. Unfortunately, such a
perfect reference cannot be obtained in the actual experiments. Thus, it is necessary to consider
the following two kinds of uncertainty. One is the difference between 1/Q of the empty cavity
and that of the cavity with a perfect conductor inside. Since the perfect conductor does not
dissipate energy at all, it will affect the electromagnetic field distribution in the resonator more
strongly than expected within the framework of the perturbation. In principle, the influence
of this uncertainty is dependent on the sample size, the measured frequency, and the coupling
constant of the resonator. If the sample sizes are not too large, this uncertainty is negligibly
small in the normal state. However, in the superconducting state, it can greatly affect the
determination of Rs at the lowest temperature, as will be discussed in section 4.3. An effective
method to check this is to measure another superconductor with much smaller λ and Rs. Bonn
et al [50] have proposed the use of Pb:Sn alloy with the same dimensions as a high-Tc cuprate
sample, and have estimated that this correction amounts to �(1/Q) ∼ 10−9 at ∼4 GHz, which
roughly corresponds to 7 µ� in Rs. They have subtracted this correction from the measured
data to obtain the intrinsic Rs(T ) of the sample. Note that the loss for such a correction is
comparable to Rs at the lowest temperature, suggesting that the correction of this uncertainty
crucially affects the estimate of the residual surface resistance, Rres. The effect of Rres will be
discussed in section 4.3 again.

The other uncertainty that should be considered is the effect of thermal expansion of the
sample. Many groups have discussed this effect in extracting Xs(T ) [21, 26, 51]. As was
pointed out by Dressel et al [21], the thermal expansion of the sample causes the temperature-
dependent metallic shift, C(T ). Since Xs(T ) is given by (C(T ) − � f (T )/ f0)/G in the
SDR, this effect can lead to a large systematic error in the determination of Xs(T ) (or λ(T ) for
superconductors) with changing temperature. In addition, in the enclosed cavity (not hot-finger
type), the thermal expansion of the cavity causes the temperature-dependent resonator constant
G(T ). Tsuchiya et al have corrected these uncertainties by using linear thermal expansion
coefficients of both the sample and the cavity [51]. On the other hand, Hardy et al have
pointed out that the sample movement in the resonator made the reliable determination of λ(T )

difficult [26]. This motion is caused by the thermal expansion of a dielectric rod supporting
the sample. In order to minimize this effect, they have developed a loop-gap resonator with
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a special assembly made of a thin-walled quartz tube. A brief description of this apparatus
has also been given by Hosseini et al [52]. As will be discussed again in the next section, this
resonator has played a crucial role in the determination of the temperature dependence of λ.
However, the influence of the sample movement has not been investigated extensively by other
groups using a cylindrical superconducting cavity resonator. In fact, it largely depends on the
structure of the resonator, the size of the sapphire rod, and the configuration of the sample
and the electromagnetic field. Lee et al have reported that the correction due to the thermal
expansion of a sapphire rod with 0.5 mm diameter in a cylindrical Nb cavity was typically
�10% of the total frequency shift (in particular, it was negligible below 30 K), while a sapphire
disc resonator in a Nb shield was extremely sensitive to the sample movement [53]. Therefore,
practically, it is preferable to estimate the influence of the sample movement by measuring the
reference samples whose properties are well known.

When we measure Zs as a function of magnetic field, the above-mentioned uncertainty is
unimportant even in the superconducting state, since the data in zero field can be used as those
of the nearly perfect reference. At a fixed temperature, the thermal expansion effect is also
negligible.

In the opposite limit to the SDR, referred to as the depolarization regime (DPR), since
|k̂ L| � 1, the electromagnetic field can be treated as approximately quasistatic (QS). Thus,
the complex dielectric constant, ε (=ε1 − iε2), can be obtained from �ω̂/ω0 for the antinode
of the microwave electric field. The following Buravov–Shchegolev formula has been used
widely [54]. [

�ω̂

ω0

]
DPR

= − γ

N

ε − 1

ε − 1 + (1/N)
. (12)

Here, γ is a geometrical constant determined by the resonance mode and the ratio of the sample
volume to the cavity volume [19], and N is the depolarization factor in the direction of applied
microwave electric field. Although, strictly speaking, N cannot be defined for nonellipsoidal
samples, the so-called ellipsoidal approximation is effective for such samples. In the DPR, the
factors of γ /N and γ /N2 play a similar role to the metallic shift, C , and the resonator constant,
G, in the SDR, respectively. For the high-Tc cuprates and the related materials, equation (12)
has been used for analysing the interlayer electrodynamics of Bi2Sr2CaCu2Oy (BSCCO) and
the charge dynamics in the quasi-one-dimensional spin ladder compounds (see sections 4.4
and 6, respectively). In the actual analyses, we can experimentally determine the factor γ /N
by utilizing the fact that �(1/2Q) shows a peak when external parameters such as temperature
and magnetic field change (the so-called depolarization peak in dielectrics and the Josephson
plasma resonance for layered superconductors), while the factor γ /N2 is determined such that
the resultant ε1 (or σ1) is consistent with dc and optical data.

It should be noted that the data analysis by the Buravov–Shchegolev formula is not always
valid for poorly conductive materials. In particular, for highly dielectric materials with a very
large dielectric constant such as the CDW state, the real part of k̂ is no longer negligible.
Thus, the above assumption for the DPR (|k̂L| � 1) collapses. In such a highly dielectric
region (HDR), �ω̂/ω0 shows pseudo-periodic behaviour as a function of ε1, which makes the
extraction of ε from �ω̂/ω0 difficult [55].

When we investigate the various phases in the carrier concentration versus temperature
phase diagram of high-Tc cuprates and the related materials, we often encounter the situation
in which experimental data exist in the crossover region between the SDR and the DPR. It is
not easy to extract σ in such an intermediate region, since it is not straightforward to connect
between SDR and DPR continuously. Evidently, the QS approximation (valid for the DPR),
where the field inside the sample is assumed to be uniform, is broken down in the SDR.
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As an approach to connect between the DPR and the SDR, an extended quasi-static (EQS)
approximation has been tried. In this method, the field inside the sample is described by
the Helmholtz equation, (∇2 + k2)E (or H) = 0. For an isotropic spherical sample, several
approximating solutions have been obtained under this EQS approximation [56–58]. Recently,
Inoue et al have investigated the limit of applicability of such approximating solutions in
the crossover region from DPR to SDR, by using a double-sphere model, in which the full
Maxwell equations can be solved analytically [59, 60]. They also derived a new approximating
formula for the spherical sample from the exact solutions, which were the extended version
of the Champlin–Krongard formulae [56] and can be applied throughout the crossover region.
From the experimental point of view, Ong has proposed the graphical method based on
the Buravov–Shchegolev formula in the QS approximation, as an aid to obtain σ from the
experimental data [61]. Kitano has applied this method to a high-Tc cuprate, BSCCO, based
on the Champlin–Krongard formulae in the EQS approximation [62]. To sum up, the data
analysis in the crossover region between the SDR and the DPR has not been well established
yet. Further study, using a large-scale electromagnetic field simulator etc, might be important.

4. Superconductivity of high-Tc cuprate superconductors

4.1. Electromagnetic response of superconductors

The electromagnetic response of a superconductor in weak fields provides one of the most
essential features of superconductivity, because in the dc limit it corresponds to the Meissner–
Ochsenfeld effect,

j = − 1

µ0λ
2
L

A, (13)

where

λ−2
L = µ0ne2

m∗ . (14)

Here, µ0 is the permeability of vacuum, j is the current density, A is the vector potential,
which is related to the magnetic field, B, as rot A = B, e is the electronic charge, and n
and m∗ are the number density and the effective mass of electrons, respectively. Combining
equation (13) with the Maxwell equation, it was found that the electromagnetic field inside
the superconductor decays as A ∼ A0e−x/λL , where x is the distance from the surface of the
superconductor. Thus, λL is found to be an important length scale of the spatial change of
electromagnetic field in the superconductor (London penetration depth) [12]. For T 	 0 K,
there is almost no quasiparticle (QP) that can dissipate energy, and equation (13) is valid even
at finite frequencies, provided that h̄ω � � (� is the energy gap of the superconductor). Then,
the conductivity at the frequency ω can be expressed as

σ(ω) 	
(

1

µ0λ
2
L

)[
1

iω
+ δ(ω)

]
(15)

since the electric field E is given by E = − ∂
∂ t A, and the δ function at ω = 0 is related to the

imaginary part by the Kramers–Krönig relation. Equation (15) means that (1) the Meissner–
Ochsenfeld effect is equivalent to the infinite conductivity in the dc limit and (2) for T 	 0 K
or for low frequencies σ is almost pure imaginary with a very small σ1.

At finite temperatures, QPs are excited thermally above the superconducting energy gap.
This causes the change in ns, leading to the temperature-dependent λL . With increasing
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Table 1. D(E) and the exponent of �λL (T ) versus node geometry of the superconducting order
parameter.

Node geometry D(E) Exponent n (λ ∝ T n)

Fully gapped 0 Thermally activated
Points E2 2
Lines E 1
Gapless Constant 2

temperature, QPs are excited more and more. Thus, λ becomes longer. According to the BCS
theory [13], λL at a temperature T , λL (T ), of a clean superconductor is given as [15]

λ−2
L (T ) = λ−2

L (0)

[
1 − 2

∫ ∞

�

(
− ∂ f

∂ E

)
D(E) dE

]
, (16)

where f is the Fermi distribution function of the QP with energy E , and D(E) is the density
of states (DOS) of the QPs.3 In particular, at low temperatures, where the gap magnitude is
almost temperature independent, the change of λL (T ), �λL(T ), is thermally activated,

λL (T )−2 	 λL (0)−2

[
1 −

√
2π�

kBT
exp

(
− �

kBT

)]
. (17)

These are characteristic of the phonon-mediated pairing in the BCS theory, where the Cooper
pair wavefunction is s-wave-like, and the gap in the QP excitation spectrum is fully opened on
the Fermi surface. However, in many superconductors these are of current interest; the Cooper
pair wavefunction is considered to be anisotropic. This is because various kinds of correlation
effect between electrons favour the pairing with finite angular momentum. Such anisotropic
Cooper pairs are well known in the superfluidity of liquid 3He. The symmetry of the pair
wavefunction is determined by the kind of interaction and the symmetry of the crystal [63].
For such anisotropic Cooper pairs, the gap parameter, �, also depends on the momentum, k,
and it will vanish for special directions in the k space. In this case, QP excitation is possible
even very close to the Fermi energy, and the QP DOS behaves typically as

D(E) ∝ En, (18)

where the exponent n is determined by the topology of nodes in the gap [63]. For lines of
nodes n = 1, whereas for points of nodes n = 2. This leads to the �λL(T ) with a power law
form,

�λL ∝ T k, (19)

and the exponent k also reflects the topology of the nodes. These are summarized in table 1.
Therefore, in principle, the low-temperature penetration depth measurement can probe the
pairing mechanism of superconductivity.

When QPs exist in the superconductor, they dissipate energy and cause a finite σ1. The
general form of the conductivity was calculated by Mattis and Bardeen [64]. The qualitative
behaviour is shown in figure 2. Since, at low temperatures, quasiparticles are created by the
thermal excitation above the energy gap, the temperature dependence of conductivity, σ(T ),
shows a thermally activated behaviour for an s-wave (isotropic) superconductor. Lack of QP
in the low-temperature limit also leads to vanishingly small Rs as

Rs(T ) ∝ (h̄ω)2

kBT
ln

(
4kBT

h̄ω

)
exp

(
− �

kBT

)
. (20)

3 For superconductors including QPs with finite mean free path, �, the temperature dependence of the penetration
depth, λ (λ(T )), changes slightly from λL (T ).
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(a) (b)

Figure 2. Conductivity of superconductor. (a) Frequency dependence at low temperature. The δ

function at ω = 0 is omitted. (b) Temperature dependence at a low frequency.

In contrast, for anisotropic superconductors with nodes in the gap, σ1 also shows a power-
law behaviour because of the same physics for λ(T ). For instance, for a dx2−y2 wave
superconductor, it is expected that σ(T ) ∝ T 2, very generally [65].

On the other hand, close to Tc, σ1 shows a very prominent feature. That is, σ1(T ) of the
s-wave (BCS) superconductor [13, 14] exhibits a large enhancement below Tc (the so-called
coherence enhancement) (figure 2(b)). The coherence enhancement was first observed in the
NMR experiment [66], but it was rather recently even in conventional superconductors that the
same effect was observed in the ac conductivity measurement [67]. Since this enhancement is
due to the diverging DOS at the Fermi energy EF, (1) this effect is more prominent for lower
frequencies, and (2) this effect is strongly suppressed for the gap with nodes. These will be
discussed in section 4.2, again.

To be more quantitative, there is no universal dependence of σ as a function of temperature,
frequency etc, because it depends on the mean free path of the QP, �. Another complexity is
introduced because in superconductors a finite size is necessary for a wavepacket to be formed
by the superconducting charge carriers. The smallest size is called the coherence length, ξ [6],
which is another very important length scale characteristic of superconductors, and is given as

1

ξ
= 1

ξ0
+

1

�
, (21)

where ξ0 is the Pippard coherence length, which was given by the uncertainty relations as

ξ0 = h̄vF

π�0
(22)

(�0 is the energy gap at T = 0 K). Because of the finite coherence length, the electromagnetic
response of superconductors is nonlocal, in general. The nonlocal formula was calculated by
the BCS theory [64, 68, 69], and is given in textbooks (see for example [15]). Nonlocality
is only important in superconductors with ξ > λ, which are mostly the so-called type-I
superconductors. Fortunately, for high-Tc superconductors, λ � ξ is valid in most cases.
Thus, by a similar discussion as in section 2.1, the electromagnetic response can be regarded
as local (the local limit (London limit)), and the nonlocal equation reduces to equation (13).

Experimentally, in most of the measurements of superconductors, we measure the surface
impedance Zs, since the penetration depth λ is much smaller than the sample dimension, L.
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4.2. Symmetry of condensate wavefunction

4.2.1. Temperature dependence of penetration depth. For high-Tc cuprates, many works
have been published on penetration depth, λ, measured by the electromagnetic response, since
the symmetry of the condensate wavefunction is very important information for understanding
the mechanism of high-Tc superconductivity. However, it is also well known that �λ(T ) is
very sensitive to the morphology and defects of the samples, particularly for high-Tc cuprates.
Therefore, we will restrict our attention to studies performed for bulk ‘single’ crystals or very
high-quality ‘single-crystalline’ films.

Since cuprate superconductors are quasi-two-dimensional, we should distinguish λ for
shielding current flowing in the CuO2 plane and that for perpendicular to the CuO2 plane.
Usual nomenclatures are λab for the former, and λc for the latter. For a while, we will focus on
λab, and will not write the subscript ‘ab’. The anisotropy of λ will be discussed in section 4.4.

At a very early stage, few studies discussed the low-temperature behaviour of λ(T ) [70].
All of the subsequent studies reported a T 2 behaviour [30, 71–73]. A breakthrough was
brought by Hardy et al [26], who reported a clear T -linear dependence of λ as a function
of temperature in a high-quality, optimally doped YBa2Cu3Oy (YBCO) crystal4. As has
already been mentioned, they paid a great deal of attention to preventing even very slight
displacement of the crystal during the measurement, so that they used a loop-gap resonator,
where the electromagnetic distribution inside the resonator is very uniform5. Thus, their data
made a large number of the high-Tc community think it is convincing. Subsequent studies
succeeded in reproducing the T -linear behaviour in YBCO [78], BSCCO [53, 79–81], and
Tl2Ba2CuO6 [82], probably because of the improvements in crystal qualities.

The T -linear behaviour suggests the presence of line nodes in the order parameter.
Theoretically, it had been pointed out that the spin-fluctuation mechanism of the pairing on
the CuO2 plane favours the dx2−y2 pairing, which has lines of nodes [83]. For this case,
since N(E)/N0 = E/�0 (�0 is the maximum gap, and N(E) and N0 are the QP DOS in
the superconducting state with the energy E and that at the Fermi level in the normal state,
respectively),

�λ

λ(0)
	 (ln 2)

T

�0
. (23)

The data in [26] also showed a good agreement in the coefficient of the temperature derivative.
However, λ(T ) data only provide the information on the topology of nodes (lines, points
etc). More strictly speaking, λ(T ) data do not provide any information on whether there is
a finite gap opened with the magnitude smaller than the lowest temperature measured. Now,
together with the angle-resolved photoemission spectroscopy (ARPES) data [84] and those
in phase sensitive interference experiments [85], it is well established that these penetration
depths provided a strong support for unconventional (dx2−y2 -wave) pairing for almost optimally
hole-doped high-Tc cuprate superconductors.

4 Recently, it was established that the use of BaZrO3 (BZO) crucibles resulted in YBCO crystals with at least one order
of magnitude increase in purity (∼99.995%), compared with that of YSZ (yttria-stabilized zirconia) crucibles [74].
However, considerable care should be taken for oxygen annealing for such extremely high-quality crystals. Srikanth
et al measured Zs of such high-purity crystals, and reported an anomaly in λ(T ) below Tc, suggesting the presence
of another superconducting transition [75]. However, Kamal et al have confirmed that there was no evidence for
two order parameter components in both λ(T ) and Rs(T ), using a similar ultra-purity BZO-grown crystal [76, 77].
They discussed that the oxygen vacancies in the higher-purity BZO-grown crystals had a tendency to cluster, acting
as electronic scattering centres similar to intentionally doped impurities.
5 In addition, they used the H ‖ ab configuration because in this configuration the demagnetizing effect is less
prominent for typical crystal pieces of YBCO.
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La2−x Srx CuO4 (LSCO) is an exception, where the T -linear behaviour has never been
reported both in bulk crystals [86] and in thin films [87]. This is probably due to the difficulty
in preparing good crystals or films of this material. The authors in [87] argued that the result
was consistent with the unconventional pairing, because the T 2 behaviour corresponding to
the gapless state can only be realized for heavily damaged samples with a large number of
magnetic impurities for conventional pairing. In magnetically aligned powder samples, the
T -linear behaviour was reported by the measurements of static magnetic susceptibility [17].
However, as was mentioned in section 3, λ(T ) data in this method were extracted based on
many assumptions, and the information on the temperature dependence is less reliable. The
final conclusion should wait until measurements in single crystals or single-crystalline films
with superior quality are performed.

To investigate the mechanism of superconductivity in terms of the λ(T ) study, important
tests in the next stage are to explore (1) the dependence on disorder, (2) the dependence on
carrier concentration, and (3) λ(T ) in electron-doped cuprate superconductors.

The effect of disorder was investigated in YBCO by Bonn et al [50]. As has already
been summarized by Bonn and Hardy [9], only a small amount (∼0.15%) of nonmagnetic Zn
impurities, which substitute for Cu, caused a change from T -linear to T 2 behaviour in λ(T )

without appreciable reduction in Tc. On the other hand, a larger amount (0.75%) of magnetic
Ni impurities was found not to alter the T -linear behaviour. These results were quite contrary
to what was expected in the conventional BCS theory, where disorders with magnetic moments
destroy superconductivity more strongly than nonmagnetic disorders. In a d-wave scenario,
this surprising behaviour has been interpreted to mean that Zn impurities played the role of
resonant (unitary) scatterer, which leads to a large pair-breaking effect, while Ni impurities
behaved as a Born scatterer [88]. Recently, a local STM experiment was performed by Pan
et al [89], which clarified the different roles between Zn and Ni impurities. The former created
a sharp resonant peak in the QP DOS at the Fermi level, EF, whereas the latter created a similar
peak at a finite energy far from EF. This difference has been explained theoretically [90].

Investigation of the dependence of λ(T ) as a function of carrier concentration, x , is
not easy, since changing carrier concentration often affects the quality of the single crystals
considerably. Here, we focus only on the reports for YBCO crystals. Bonn et al [91]
investigated the dependence on doping of λ(T ) from the underdoped to the slightly overdoped
crystals, and found that the T -linear behaviour was independent of x , strongly suggesting that
the condensate wavefunction is dx2−y2 -like for almost all the ranges of hole doping. More
surprisingly, the plots of λ2(0)/λ2(T ) versus T/Tc showed a remarkable universality over the
entire temperature range. Since 1/λ2(0) is roughly proportional to x in the underdoped region
(‘Uemura’ plot) [92], it is suggested that the superfluid density,ρs (∝1/λ2) for various x values,
was described as ρs(x, T ) ≈ ax − bT (a and b are numerical constants) at low temperatures.
Lee and Wen [93] pointed out that neither the usual BCS model with d-wave symmetry nor the
t–J model with U(1) gauge formulation will ever be able to explain this behaviour as x goes to
zero. This paradoxical relation has been mysterious for the last decade. Very recently, Hosseini
et al [94] succeeded in investigating the doping and temperature dependence of ρs along the
c axis close to the superconductor–nonsuperconductor boundary. Motivated by this result,
Sheehy and co-workers [95] have proposed a unified theory of the doping and temperature
dependence of ρs both in the ab planes and in the c direction. We will discuss this again in
section 4.4.

Symmetry of the electron-doped cuprate is an important touchstone for investigating the
mechanism of superconductivity in cuprate, since a resonating-valence-bond-based picture
expects a symmetry of the physical properties between hole-doped and electron-doped
cuprates [96], whereas other mechanisms do not necessarily expect such a symmetry.
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(a) (b)

Figure 3. Temperature dependence of λ of PCCO and La2−x Cex CuO4 (LCCO): (a) overdoped,
(b) optimally doped and underdoped [108].

Conclusions obtained by experimental studies have been diverging. Since tunnelling
studies [97–99] proposed a fully gapped order parameters, whereas a SQUID experiment [100]
and an ARPES experiment [101] proposed a d-wave order parameter. Even restricting our
interest to the electromagnetic response, electron-doped cuprates have had a complex history.
Wu et al [102] reported the thermally activated behaviour of λ(T) for Nd2−x Cex CuO4 (NCCO).
However, Cooper [103] pointed out that this was due to the temperature dependence of
the magnetic moment of Nd (note that for magnetic materials Xs = µωλ, where µ is the
permeability of the material). Another problem in electron-doped cuprate is the difficulty in
preparing good crystals. Recently, however, good films have become available from an NTT
group [104]. A study in a good Pr2−x CexCuO4 (PCCO) film, which does not have magnetic
moment, revealed a thermally activated behaviour [105], whereas Prozorov et al [106] and
Kokales et al [107] reported T 2 (or T α) behaviour in PCCO crystals and films from different
laboratories. Recently, Skinta et al [108] investigated the dependence of λ(T) on carrier doping
for films from the NTT group [104]. They found that the overdoped and the optimally doped
samples exhibited thermally activated behaviour, whereas the underdoped sample showed the
T 2 behaviour (figure 3). Thus, they suggested the presence of a phase transition from d-wave
to s-wave state as a function of doping. A similar crossover (or transition) was also proposed
by a point contact spectroscopy study [109]. A more recent study by the same group down to
lower temperatures using improved films with a buffer layer between the film and the substrate
proposed a full gap opening (�/kBTc = 0.3–1.0, smaller than the BCS value of 1.74) for
all samples in a wide range of doping [110]. Another recent study on PCCO films [111]
reported that all the films showed T 2 behaviour down to 0.35 K. However, the dc resistivity
values of their films are higher by an order of magnitude than the ones in [110], especially for
underdoped films.

After all, no consensus has been formed on the temperature dependence of λab in
electron-doped cuprates, even now. Probably, the origin of the controversy is the difficulties
in controlling the sample characteristics of electron-doped cuprate superconductors. A
comparative, comprehensive study by different experimental methods using well characterized
crystals (or films) from the same laboratory is the only way to resolve the controversy.

In summary, for hole-doped cuprate superconductors, except for LSCO, a clear T -linear
behaviour of λ has established the d-wave nature of the condensate. Quantitative understanding
of the doping dependence of dλ(T )/dT had been a long puzzle. Recently, theoretical
understanding just started.
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On the other hand, the symmetry of the condensate wavefunction of electron-doped cuprate
superconductors has still been in controversy. Since the study of pairing symmetry plays an
essential role to restrict the possible theories on the mechanism of superconductivity, further
improvements of sample preparation and characterization are earnestly desired.

4.2.2. Magnetic field dependence of penetration depth. Penetration depth depends
on magnetic field, H , even very slightly. Some of the origins are intrinsic to
superconductivity [112]. Yip and Sauls were the first to point out that this nonlinearity in
the Meissner effect reflects the symmetry of the pair wavefunction [113]. They suggested that
λ changes linearly in magnetic field in a d-wave superconductor, in contrast to the conventional
superconductor. Physically, this is due to the backflow of the quasiparticles. Thus, the magnetic
field dependence of λ can be a new tool to study the symmetry of the pairing function.

Maeda et al measured λ(H ) of BSCCO [114] (and also of YBCO [115]), and found H -
linear behaviour of λ, which was consistent with the prediction of Yip and Sauls for d-wave
superconductivity. In this study, magnetic field was applied perpendicular to the CuO2 plane,
despite possible problems related to the large demagnetization factors and sharp edges. This
was because it was the only possible configuration to catch λab in BSCCO. However, this
might cause field inhomogeneity, which is unfavourable for the magnetic-field dependence
study. Subsequent studies with better resolution in samples where edges were rounded, and
in the H ‖ ab configuration [31, 116], found different results in YBCO from the previous
results and also from the theoretical prediction. From the experimental point of view, a main
problem for the field dependence measurement of λ is the presence of sharp edges of the crystal
used, which possibly cause inhomogeneous current distribution. Thus, Bidinosti et al [116]
prepared crystals where the edges were polished to a round shape.

For electron-doped NCCO, Maeda et al [117] measured λ(H ) in crystals formed into
a circular disc shape. Although the temperature dependence of λ is apparently thermally
activated, as was discussed above, the field dependence is consistent with the Yip–Sauls
prediction, suggesting the presence of line nodes in the gap.

Recently, Jujo [118] re-investigated the Yip–Sauls result theoretically, and found a similar
result to the experimental result of Bidinosti et al by treating the gauge invariant problem
correctly. If any subsequent theories verify this conclusion, the field-dependence study of the
cuprate superconductor can form a consensus.

To sum up, although the field dependence of λ could be a new, important method to
discuss the symmetry of the condensate wavefunction, many issues remain to be seen, both
experimentally and theoretically.

4.3. In-plane conductivity of quasi-particles in the superconducting state

To extract conductivity data of high-Tc cuprate, from the raw data (Rs and Xs), the most
important problem is how to estimate the residual surface resistance, Rres, in the low-
temperature limit [119]. Rres strongly depends on the sample quality [120], and may also
depend on temperature in an unidentified way. Furthermore, for a d-wave superconductor,
it is proposed theoretically [65, 121] that even an ideal sample exhibits an intrinsic residual
conductivity, σ00, of

σ00 = ne2

m

(
h̄

�0

)
, (24)

where n and m are the density and the effective mass of the electron, respectively. This
corresponds to the residual surface resistance R0

res of the order of R0
res ∼ 5×10−8(ω/2π)2 � for
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(a) (b)

Figure 4. (a) Temperature dependence of Rs of YBCO. (b) Temperature dependence of the real
part of the conductivity of YBCO at several microwave frequencies [52].

typical high-Tc cuprate superconductors, where ω/2π is the frequency in GHz [9]. Therefore,
one should always keep in mind that very detailed quantitative discussions of σ at low
temperatures in the superconducting state might be dangerous, unless complete knowledge
about Rres(T ) has been obtained. Probably, the most satisfactory way of treating this problem
is preparing superior crystals with very small Rres values. To the best of our knowledge,
however, such crystals have been available only for YBCO [77]. In other most cases (or even
for the crystals of ‘high quality’), we should recall that how we treat Rres affects the extracted
conductivity data seriously.

Figure 4(a) shows the in-plane surface resistance, Rs, of optimally doped YBCO crystals
as a function of temperature, measured at five different microwave frequencies [52]. Two
features are remarkable [9]. One thing is that a very low value of Rs (<1 m� at 22 GHz) was
achieved, and the other thing is that the temperature dependence of Rs is nonmonotonic for
such low-Rs crystals. Although the Rres value in the data of figure 4(a) is still larger than the
intrinsically expected value, R0

res, for a d-wave superconductor, Hosseini et al regarded that
most of the Rres came from an intrinsic origin, and proceed further. To see what is going on
more clearly, they obtained σ1 from the Rs data as

σab = Rs

(
2

µ2
0ω

2λ3(T )

)
, (25)

which is valid in the most temperature region of the superconducting state, where σ1 � σ2.
Since they used λ(T ) data obtained in different measurements, they avoided various problems
associated with the measurement of the reactive part, Xs.

Figure 4(b) shows the in-plane conductivity, σab, of an optimally doped YBCO crystal as a
function of temperature [52]. The most prominent feature in figure 4(b) is a large, broad hump
below Tc. At first glance, the reader might think that this corresponds to the so-called coherence
peak. However, it has been well established that there is no coherence enhancement in the
temperature dependence of the longitudinal relaxation rate of nuclear spin, T −1

1 , measured
by the NMR technique [122]. Since the measurement frequency is much lower in the NMR
than in the microwave conductivity, a sharper, larger peak should show up in the NMR data,
provided that the broad hump in figure 4(b) is the coherence enhancement. Thus, the broad
hump in the microwave conductivity should be interpreted in terms of different origins other
than the coherence enhancement.
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Now, the structure has been interpreted as the result of the strong suppression of the
QP scattering rate in the superconducting state [123–125]. The QP conductivity, σ1, can be
written as σ1 = nQPe2τ/m∗, where nQP, τ , and m∗ are the QP number density, scattering
time, and effective mass of the QP, respectively. Since nQP decreases and τ increases with
decreasing temperature, a peak will show up in the temperature dependence. This suggests an
electronic origin for the pairing mechanism of superconductivity, since the gap opening in the
QP excitation spectrum can strongly suppress the QP scattering in the superconducting state.
A similar conclusion, that the QP scattering time, τ , becomes longer in the superconducting
state, was also obtained by thermal conductivity measurement [126].

As we mentioned briefly at the beginning of this subsection, the low-temperature behaviour
of σ1(T ) is strongly dependent on how one estimates the residual Rres(T ). Since the measured
Rres is still higher than the ideal value even for the d-wave case, one should discuss the validity
or the consistency of the above results. Hosseini et al discussed the frequency dependence
(spectrum) of σ1 from the data in figure 4(b) based on the two-fluid model, and found that (1)
the data at each temperature were well fitted by the Drude formula,

σD ≡ σdc
1

1 + (ωτ)2
, (26)

(2) the fitted τ increased with decreasing temperature very rapidly indeed, and (3) the
temperature dependence of the spectral weight of the normal fluid

∫
σ1(ω) dω agreed with

that obtained independently form the penetration depth data, 1 − (λ(0)/λ(T ))2. This strongly
suggests that the above analysis and the obtained conclusion are correct, as far as the data in
YBCO are concerned.

Bonn et al investigated the effect of disorder in Zn and Ni doped YBCO [50]. They found
several remarkable differences between Zn-doped and Ni-doped crystals, and ascribed them to
the difference between the unitary scatterer (Zn) and the Born scatterer (Ni). Hirschfeld et al
[65, 88] analysed their data in terms of a phenomenological d-wave model that treats strong
scattering, and succeeded in explaining most of these results, including the temperature, and
frequency dependences of conductivity, effect of disorder, etc. These were discussed in the
review by Bonn and Hardy [9]. The only controversy between the experimental data and the
theoretical interpretation in terms of the d-wave strong scattering theory was in the temperature
dependence of σ1 at low temperatures. As has already been mentioned, theoretically, it was
expected that σ1 ∝ T 2, independent of the details of the models, because the QP density
changed linearly in T and τ also changed linearly in T . On the other hand, the experimentally
observed conductivity behaved as σ1 ∝ T . This discrepancy had been a puzzle. Recently,
Turner et al [41] measured the conductivity spectrum between 0.6 and 20 GHz by the broadband
bolometric method, and found a cusp-shaped conductivity spectrum, which was expressed
as σ1(ω, T ) = σdc/[1 + (ω/�)y], where a parameter � varied almost linearly in T , and
y ∼ 1.45. This means that σ1 did not change linearly in T in the measurement with the
improved sensitivity. Also theoretically, the inclusion of the order parameter suppression at
impurity sites reproduced the σ1(T ) data in [41] very well [127]. Thus, so far as the data
in YBCO are concerned, it seems that almost all the aspects were consistent with the d-
wave scenario. In particular, quantitative aspects were well explained by the strong-scattering
theories. However, it should be recalled again that subtle behaviours at low temperatures are
always linked to the possible extrinsic Rres(T ). In this method, although a possible uncertainty
in Rres(T ) arising from the deviation of the sample σ1 from an infinite σ1 of a perfect conductor
is eliminated, uncertainties arising from incomplete knowledge of the Rres(T ) of the sample
itself cannot be eliminated. It is dangerous to rely on the σ1(T ) behaviour too quantitatively,
particularly at low temperatures.
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(a) (b)

Figure 5. (a) Left panel: σ1 of BSCCO plotted versus T for 0.2, 0.3, 0.4, 0.6, and 0.8 THz as
squares, octagons, diamonds, circles, and triangles, respectively. Upper right panel: 1/τQP as a
function of temperature. Lower right panel: Drude conductivity, σD(T ) using τQP in the upper
right panel [131]. (b) Left panel: σ1–σD plotted at 0.2, 0.36, and 0.64 THz as squares, circles, and
triangles, respectively. The dashed lines show the contribution of a collective mode. Lower right
panel: the difference between the data and the fit. This was ascribed to thermal fluctuations. Upper
right panel: 1/τ (T ) for the QPs [131].

In-plane anisotropy was reported by the same group [128]. They suggested that the b-axis
conductivity can be adequately described by the sum of a Drude form, which is attributed
to the thermally excited QP transport from quasi-two-dimensional bands, and a frequency
independent background associated with a quasi-one-dimensional band. Thus, it seems that the
underlying behaviour of the CuO2 plane is strong, despite the presence of the one-dimensional
CuO chain.

As we described above, for other materials than YBCO, a large Rres hindered a detailed
analysis for conductivity. However, essentially the same behaviours were obtained for other
materials such as BSCCO [119] and La2−x Srx CuO4 (LSCO) [129], by subtracting Rres

(assumed to be T independent) before calculating σQP by equation (8).
Lee et al [53] measured Rs of crystals with lower Rres grown by Mochiku et al [130].

Since their Rres showed an ω2 dependence, together with the T -linear λ(T ), they thought that
their Rres was dominated by an intrinsic origin, and performed a similar analysis for the Rs data
as was made in YBCO by Hosseini et al. As a result, their σ1 remained higher than that in the
normal state even in the low-temperature limit. This σ1(T ) behaviour was essentially the same
as was obtained by Shibauchi et al previously [119], when the residual Rres was not subtracted.
Thus, the problem is, again, how one should interpret Rres. Although the ω2 dependence of Rres

is the same as the intrinsic BCS behaviour (equation (20)), the same frequency dependence
can be caused by various extrinsic factors [120]. Indeed, many early Rs data of films with
rather high value of Rs exhibited the ω2 dependence. Thus, although progress was made in
the sample quality, the intrinsic σ1(T ) of BSCCO remained to be seen, even after the work by
Lee et al.

Recently, σ1(T, ω) data were taken by a rather different technique of THz transmission
by Corson et al [131]. This technique is, at least, free from ‘the residual Rs problem’ in
the microwave cavity perturbation technique, although different ‘residual’ problems may
appear. They investigated the complex conductivity of the sample between 0.2 and 0.8 THz
by measuring the complex transmission of the sample films. They found that σ1 in the low-
temperature limit decreased with increasing frequency (see figure 5). In other words, with
decreasing frequency, σ1 became higher than that above Tc, which was in agreement with what
was obtained in many microwave measurements of samples with a finite Rres. This strongly
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suggests that Rres in microwave measurement does have some significance, and that it should
be taken into the analysis. The authors considered that the two-fluid model was insufficient,
and they added a third extra component which will be discussed later. Regarding that the QP
contribution was represented by the Drude formula, as was made in YBCO, they found that the
QP scattering rate underwent a T -linear behaviour even below Tc without showing any distinct
discontinuity at Tc, which was found to be very different from what was established in YBCO.
However, the T -linear behaviour of the scattering rate is in good agreement with a recent
ARPES result for the QP in the nodal direction ((π , π)) [132, 133]. With these results taken into
account, the authors ascribed the large σ1 even at the lowest temperatures to the third additional
contribution for the dissipation which exhibits a similar temperature dependence to that of the
superfluid density. They argued that this additional contribution was due to the order parameter
fluctuation arising from the spatial inhomogeneity of the superfluid density, and that it could
be caused by the same inhomogeneities that generated the different temperature dependence
of the scattering rate from that in YBCO. The different behaviour of the QP scattering rate
between YBCO and BSCCO may be related to the degree of inhomogeneity which generates
the additional dissipation. A similar tendency was also observed in the increase of the QP τ

inferred from the thermal conductivity data [61, 134]. Detailed systematic experiments of
σ1(T, ω) in various classes of materials with superior quality (in particular, the very small
Rres) are still needed to clarify the above-mentioned conjecture.

To incorporate with these apparently inconsistent results, it is important to recognize the
anisotropy of QP parameters in the Brillouin zone [135]. It is now becoming common sense
that the Fermi surface development upon doping is nonuniform in k space [136]. Thus, we
should identify the point in k space to discuss the QP behaviour. Also in an STM measurement
on BSCCO [137], it was suggested that the superconducting property in the real space was
nonuniform in the nano-scale. Thus, what kind of QP is probed in the transport experiment,
and what kind of effect the disorder gives on the QPs, are subtle and unresolved problems.
Recently, Gedik et al [138] tried to measure the QP scattering time τ of YBCO in the antinodal
direction of the d-wave superconducting gap. Since it is difficult to probe antinodal QPs in the
equilibrium condition, they used the transient grating technique, and measured the QP τ as a
function of temperature, T , and the nonequilibrium current I . They found that τ was shorter
than what was obtained by Bonn et al by more than two orders of magnitude. However, τ was
found to diverge with decreasing T and I , which was explained by the momentum conservation
in the electron–electron scattering. The validity of such a conservation law must be sensitive
to disorder. Thus, in more disordered samples, we expect τ behaves in a very different manner.
This may resolve the above-mentioned discrepancy in τ (T ) of YBCO and BSCCO.

4.4. Anisotropy, interplane dynamics

As was pointed out at a very early stage, the electronic structure of high-Tc cuprates
is quasi-two-dimensional (2D). For example, in the normal state, the in-plane (ab-plane)
conductivity σab(T, ω) is metallic, while the out-of-plane (c-axis) conductivity, σc(T, ω), is
semiconducting [139]. This striking 2D nature is related to the exotic concept of the ‘charge
confinement’, which was fundamental to the so-called non-Fermi-liquid model [140]. On the
other hand, the so-called ‘cold-spot’ theory in the framework of the Fermi liquid model has also
been proposed to explain such an unusual anisotropic property of the charge transport [135].
Thus, the strong anisotropic nature of the high-Tc cuprates has attracted much attention, since it
is one of the central key issues associated with the mechanism of high-Tc superconductivity. In
this subsection, we discuss this issue in the superconducting state, particularly focusing on the
question of whether such strange quasi-2D properties in the high-Tc cuprates are maintained
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(a) (b)

Figure 6. Anisotropy of (a) the surface impedance, and (b) the penetration depth of LSCO [86].

in the superconducting state or not. In addition, we will also review several methods to extract
λc and σc.

4.4.1. Anisotropic superfluid reponse. The first systematic study of the anisotropic surface
impedance of high-Tc cuprates was performed by Shibauchi et al [86]. They succeeded in
measuring the penetration depth in both directions, λab and λc for wide range of carrier
concentration in LSCO (see figure 6(b)), by using the two kinds of configuration (Hω ‖
c, Hω ⊥ c). Note that the screening current flows in the CuO2 planes in the configuration of
Hω ‖ c, while it flows in and across the CuO2 planes in the configuration of Hω ⊥ c. Zs for
each configuration is roughly described by Zab

s and Z c
s as follows.

Z Hω‖c
s = Z ab

s , (27)

Z Hω⊥c
s = Lab Z ab

s + Lc Z c
s

Lab + Lc
. (28)

Here Lab and Lc are the sample dimensions in the ab plane and in the c direction, respectively.
Thus, Z c

s can be obtained from equations (27) and (28). As shown in figure 6(a), two crystals
with large faces parallel and perpendicular to the ab planes were prepared in order to minimize
the difference of the demagnetizing factor.

They found that the Josephson-coupled layer model, which was originally suggested by
Lawrence and Doniach (LD model) [141], successfully explained the magnitude of λc(0) for
a wide range of carrier concentration, and also that the overall temperature dependence of the
superfluid fraction along the c axis was different from that in the ab plane, rather similar to the
Ambegaokar–Baratoff [142] form of Josephson supercurrent. These results strongly suggest
that superconductivity of cuprates should be described as a stack of 2D superconducting layers
such as the LD model, rather than the anisotropic GL model.

Bonn et al [91] and Hosseini et al [143] measured λ(T ) in various directions of an
untwinned YBCO crystal. In contrast to an LSCO crystal, since the contribution of Zc

s to
equation (28) was very small for a thin platelet crystal of YBCO (typically, Lc/Lab ∼ 0.02),
they proposed to cleave a slab crystal into a set of narrow needles. This method can also avoid
the problem of the changes of the demagnetizing factors between Hω ‖ c and Hω ⊥ c for the
thin platelet sample. The difference between Zs for n needles at Hω ‖ a and that for the slab
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piece must depend only on Z c
s as follows.

Z Hω‖a
s (n needles) − Z Hω‖a

s (slab) = Lb Z b
s + nLc Z c

s

Lb + nLc
− Lb Z b

s + Lc Z c
s

Lb + Lc

≈ (n − 1)(Lc/Lb)Z c
s . (29)

Here, the final approximation is applied for the thin crystal (Lb � Lc). Although it seems
that this method results in a poorly controlled inaccuracy due to nonideal cleaving, Hosseini
et al reported that thin crystals with the best quality of detwinned YBCO cleave very cleanly
in the [100] and [010] directions. They found that �λc is rather flat (roughly ∼T 2) at low
temperatures, while the T linear behaviour was seen in �λa and �λb. The T 2 behaviour in λc

has been seen in LSCO [86], YBCO [91, 94, 143], and BSCCO [144], remarkably independent
of a wide range of materials with different anisotropies.

In order to explain this T 2 behaviour such that it is consistent with the d-wave nature
which was almost established in λab measurement, it is necessary to consider the tunnelling
(or hopping) process along the c axis in detail. For example, if the tunnelling or hopping
process is purely coherent, independent of the in-plane momentum (k‖), �λc(T ) must agree
with �λab(T ) [145]. Here, the term ‘coherent’ means that k‖ is conserved in the tunnelling
(or hopping) process. On the other hand, if it is purely incoherent, independent of k‖, the
resultant supercurrent along the c axis is zero, because of the vanishing average of the d-wave
symmetry on the Fermi surface [146]. Thus, it is strongly suggested that the tunnelling (or
hopping) process should be dependent on k‖, whether it is coherent or incoherent.

In the framework of the Fermi-liquid theory, the most possible source of the T 2

behaviour is the incoherent impurity-assisted hopping, which was originally discussed by
Radtke et al [145]. They showed T 2 behaviour in λc, by assuming the special form
of the impurity-assisted hopping. Hirschfelt et al has also discussed a similar impurity-
assisted hopping model, which gave rise to T 3 behaviour in λc in the clean limit and
crossed over to T 2 behaviour at a temperature in the dirty limit [147]. Another possibility
is the coherent direct hopping which is strongly dependent on k‖. For a tetragonal
cuprate, the band calculation suggests that the interlayer hopping integral has the form
of ∝[cos(kx) − cos(ky)]2, which vanishes along the nodal line of the dx2−y2 -wave order
parameter [148]. This anisotropic hopping integral was applied to the cold-spot theory,
and succeeded in explaining the behaviour of the c-axis dc and optical conductivity in the
normal state [135, 149]. Xiang and Wheatley applied it to the superconducting state, and
found that it gave rise to T 5 behaviour in λc at low temperatures [150]. Such weaker
temperature dependence has been reported for the grain-aligned powders of HgBa2CuO4+δ [16]
and the slightly underdoped single crystal of BSCCO [43]. However, as was discussed
by Xiang and Wheatley, T 5 behaviour was observable only in clean tetragonal cuprates,
and was easily replaced by T 2 behaviour due to the disorder effects, which were non-
negligible in real materials. Thus, it seems that the observation of T 5 behaviour is
almost impossible. The very flat behaviour observed in [16, 43] might have another
origin.

On the other hand, in the framework of the non-Fermi-liquid model, the interlayer
pair tunnelling model, which was originally proposed as the mechanism of high-Tc

superconductivity [151, 152], has shown behaviour similar to T 2 behaviour in λc [153].
However, the coupled two-gap system assumed in [153], such as the planar and the chain
layers in YBCO systems, is not a universal feature in high-Tc cuprates. In addition, the
key assumption in the original model that the Josephson coupling energy is equal to the
superconducting condensation energy has also been found not to be universal, by estimating
the magnitude of λc of Tl2Ba2CuO6+δ [154] and of Bi2Sr2CuO6+δ [43].
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To sum up, it seems that the universal T 2 behaviour in λc at low temperatures can be
explained successfully in the framework of Fermi-liquid theory, by using the model of the
incoherent impurity-assisted hopping mechanism.

As has been described in section 4.2, very recently, Hosseini et al investigated the
doping and temperature dependence of λc at ∼22.7 GHz [94], by using high-purity and
homogeneous YBCO crystals with carrier concentration x near the boundary region between
the antiferromagnetic insulators (AFI) and the d-wave superconductors (dSC) [155]. Instead
of the cleaving method given by equation (29), they measured a thicker sample (La×Lb×Lc =
1.803 × 0.203 × 0.391 mm3) in the configuration of Hω ‖ a. Since λc was very large for the
heavily underdoped YBCO, comparable to Lb even at the lowest temperature (∼1.2 K), they
used an approximating formula,

� f/ f0 = −�[1 − 2δ̃/d tanh(d/2δ̃)], (30)

where δ̃ was the effective screening length including the contribution of the displacement
currents, and d was the sample thickness. Equation (30) can be obtained from the calculation
of the complex eddy-current loss for a slab sample, ignoring the contribution of the supercurrent
in the b direction [18, 156]. Thus, it is probably valid only for the region near SDR, although it
seems to be possible to connect the SDR with the DPR continuously. Note that λc(T ) extracted
from equation (30) is very sensitive to the change of the ratio λc/Lb, and that the Hagen–Rubens
relation given by equation (11) is no longer effective for determining the magnitude of λc.
Instead, they used an experimental result that � f/ f0 was nearly independent of temperature
at higher temperatures where the fields completely penetrated the sample. This was the same
as already used by Shibauchi et al for the determination of λc of La1.91Sr0.09CuO4 [86]. They
found that not only the temperature dependence of ρc

s (=1/λ2
c) but also the doping dependence

were nearly quadratic, ρc
s ≈ axα − bT α (α ∼ 2).

Sheehy et al [95] tried to explain these results by considering the effect of the QP
charge renormalization phenomenologically, which was originally introduced by Ioffe and
Millis [157]. They assumed that such a renormalization factor, Zk , is vanishingly small for
states away from the nodes of the d-wave pair potential, but close to unity in the vicinity of
the nodes, and that the size of the area where Zk ≈ 1 scales with x , in a similar manner to the
evolution of ‘Fermi arc’ (ARPES) with increasing x [136]. They found that the anisotropic
shape of the Fermi arc in the kxky plane made the matrix element of the impurity-assisted
hopping anisotropic more naturally, without using the special form proposed by Radtke et al.
In addition, their model could also explain the behaviour of ρab

s (ρab
s ≈ ax −bT ), as discussed

in section 4.2. This strongly suggests that the strength of superconductivity (∝ρs) in the
underdoped region is governed by the nodal QPs surviving to the boundary region between
AFI and dSC.

4.4.2. Inter-plane conductivity of quasi-particles in the superconducting state. The first
study of σ c

1 in the superconducting state was reported for YBCO by Kitano et al [158] and
Mao et al [159], independently. Both groups measured both Z ab

s and Z c
s at ∼10 GHz by using

a similar method to Shibauchi et al (see equations (27) and (28)). It is important to note that
equation (28) crucially requires the large size of Lc to determine Rc

s , since the anisotropy of Rs

can become much smaller than that of Xs (or λ), as shown in figure 6(a). Thus, the results by
Kitano et al seem to be more reliable, since they used very thick crystals (Lc = 0.4–0.9 mm,
Lc/Lab ∼ 1). Such thick crystals also have an advantage to reduce the difference of the
demagnetizing factor between Hω ‖ c and Hω ⊥ c.

Kitano et al reported that the temperature dependence of σ c
1(T ) of a nearly optimally doped

YBCO (Tc = 93 K) (sample A) showed a broad peak similar to that of σ ab
1 (T ), suggesting that
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Figure 7. QP conductivity, σ1, of YBCO both (a) in the c direction and (b) in the ab plane [158].
Tc values are 93 K, 65 K, and 63 K for samples A, B, and C, respectively.

Figure 8. Temperature dependence of σc of YBCO [143].

the QP scattering became less anisotropic below Tc (figure 7). They also reported that σ c
1 (T )

for the underdoped YBCO (Tc = 65 and 63 K) (samples B and C) did not show the peak below
Tc, suggesting that the QP dynamics for underdoped cuprates kept the strong 2D nature even
in the superconducting state.

On the other hand, Hosseini et al measured Rc
s of the optimally doped YBCO at 22 GHz

by using the cleave method as was described in equation (29) [143]. They reported that Rc
s

obtained from equation (29) was so small that the resultant σ c
1 (T ) fell rapidly below Tc, and

rose slightly below 20 K, with no sign of the peak as observed in [158] (figure 8).
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The origin of the discrepancy between the data in [158] and those in [143] has not
been resolved yet. As already described, in [158] thick crystals (Lc/Lab ∼ 1) were used,
and the change of the demagnetizing factors was not important. The uncertainty due to
the change in the ab-plane current distribution was comparable to their previous study on
LSCO [86], and was also found to be unimportant. It is worth noting that, recently, Nefyodov
et al [160] reported a similar result to that in [158], by measuring a rectangular crystal
(La×Lb×Lc = 0.4×1.6×0.1 mm3) of the optimally doped YBCO grown in a BZO crucible.
They also calculated the geometrical factor in the configuration of Hω ‖ c, by applying the
conformal mapping method to a long strip with rectangular cross section in order to include
the demagnetization effect correctly. According to their calculation, the difference of the
demagnetizing factors was within an order of magnitude even for the ratio of Lc/Lab ∼ 0.01.

Concerning the controversy, it may rather be the case that the use of thin crystals
(Lc/Lb ∼ 0.02) in [143] makes the extraction of Rc

s much more difficult. In addition,
equation (29) assumes that the contribution of Lb Rb

s to RHω‖a
s is not changed between before

and after the sample cleaving. This assumption can be violated easily by the nonideal sample
cleaving. For thin crystals with Lc � Lb, the uncertainty due to this change may be comparable
to (n − 1)Lc Rc

s , which can be an important origin for the error.
Another important point is that the behaviour of σ c

1 is dependent on the oxygen
content [158]. The systematic optical study of YBCO crystals with various oxygen contents
also clarified that a Drude-like feature was observed in σ c

opt below 200 cm−1 for the slightly
overdoped sample in the superconducting state,while there was no such sign for the underdoped
and optimally doped samples [161, 162]. Indeed, in contrast to Hosseini et al, the overall
temperature dependence of superfluid fraction in [158, 160] was found to be isotropic,
suggesting isotropic coherent charge transport. As was discussed by Xiang and Hardy [163],
the formation of the CuO chains with increasing oxygen content reduces the crystal symmetry
so that the interlayer hopping transfer remains finite along the nodal line of the dx2−y2 order
parameter. This effect leads to the coherent charge transport along the c axis. Thus, the
discrepancy between these data may be due to a small difference in the oxygen content.

It is well known that BSCCO exhibits the strongest anisotropy (σ ab
dc /σ c

dc ∼ 105) among
all the high-Tc cuprates. This material has the advantage that there is no extra contribution to
the c-axis charge transport other than the excited carriers in the CuO2 planes. Although the
measurements were previously performed to obtain Zc

s of this material in the configuration of
Hω ⊥ c [79, 80], it is almost impossible to obtain Z c

s by this method, since λc of BSCCO is
very large (∼100–500 µm), almost comparable to Lab. Thus, the assumption of the skin depth
regime (SDR) is no longer valid, and new methods are required.

Kitano et al [164] succeeded in obtaining σ c
1 (T ) by regarding that the sample was in

the depolarization regime when it was measured at Eω ‖ c. They measured the complex
dielectric constant, ε(T ), for the slightly underdoped BSCCO (Tc = 87 K) at 50 GHz by using
equation (12), and found that σ c

1 (T ) showed a sudden drop just below Tc and a large increase
below ∼0.9 Tc [165]. One possible source of the increase was a misalignment effect. However,
it is probably not important, since a heavily underdoped Bi2Sr2Ca0.8Y0.2Cu2Oy (BSCYCO)
(Tc = 52 K) shows a monotonically decreasing σ c

1 (T ) with decreasing temperature [144].
They concluded that the behaviour of σ c

1 (T ) was dependent on the hole concentration, and that
the large increase observed in the slightly underdoped BSCCO had an intrinsic origin. The
origin of this anomalous behaviour has not been clarified yet. As a possible candidate, the
dissipation in the stacked Josephson π junctions has been considered [166]. Another candidate
is an excess conductivity caused by the spatial inhomogeneity of the superfluid density, which
was considered for the interpretation of σ ab

1 by Corson et al [131]. As was described in the
previous subsection, if this additional dissipation exhibiting a similar temperature dependence
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to that of the superfluid density contributes to σ ab
1 , it might also contribute to σ c

1 in a similar
manner.

Another approach has been developed by Gaifullin et al [43]. They proposed that the c-axis
QP conductivity, σ c

QP, was proportional to the line width of the Josephson plasma resonance
(JPR), based on a simple description using the two-fluid model. They measured the linewidth
of JPR for the underdoped BSCCO (Tc = 82.5, 77.2, and 68 K), and concluded that σ c

QP
remained suppressed to a small value even in the superconducting state,which was qualitatively
similar to the result in BSCYCO [144]. This method has also been applied to the optical
reflectivity measurements for Tl2Ba2CuO6 and Tl2Ba2CaCu2O8 thin films [168]. However,
it should be noted that the deduction of σ c

QP(T ) as a function of temperature in [43, 168]
required the assumption that σ c

QP was independent of frequency at least in the measured
microwave (or infrared) frequency region, which has not been confirmed experimentally yet.
In addition, Artemenko et al [167] have shown that such a simple relation between the JPR
linewidth and σ c

QP was valid only for the limiting temperature region near Tc, by calculating
the dielectric function in the clean d-wave superconductors with k‖-independent coherent
interlayer tunnelling. This strongly suggests that the temperature dependence of the linewidth
and plasma frequency of JPR should be analysed more carefully, and that the estimate of σ c

QP
by this method is invalid at low temperatures. In order to obtain σ c

QP correctly, it is necessary
to model the interlayer charge transport more exactly, which has not been performed yet.

The I–V characteristics of the c-axis intrinsic Josephson junctions in the slightly
overdoped BSCCO have been investigated by Latyshev et al [169]. They proposed that σ c

QP
could be obtained from the differential conductance in the limit of the zero bias when all
intrinsic junctions were resistive, and reported that σ c

QP varied as T 2 below 30 K. However,
it is necessary to re-examine the validity of their proposal. In fact, the I–V curve in the
resistive state for conventional Josephson junctions does not always correspond to that of the
QP tunnelling obtained by suppressing superconductivity with a sufficiently strong magnetic
field [170]. Thus, it seems difficult to remove the finite dissipative contribution of Cooper pair
tunnelling from the I–V curve of the all-junction resistive state.

In summary, the experimental results of the interlayer conductivity of QPs in the
superconducting state are still controversial, even now. However, at least for the underdoped
materials, the behaviour of σ c

1 seems to decrease monotonically with decreasing temperature
even in the superconducting state. In the framework of the Fermi-liquid theory, this behaviour
is qualitatively consistent with the incoherent impurity-assisted hopping model [145] and the
coherent cold-spot scattering model [163]. On the other hand, in any models based on the
non-Fermi liquid, σ c

1 (T ) has not been calculated definitely yet. Such calculations are needed
to take the discussion of σc(T ) further.

4.5. Dynamical fluctuations of superconductivity in the microwave conductivity

The effect of thermal fluctuation in conventional superconductors has been investigated mainly
in the temperature region outside the ‘critical regime’, where the GL theory is expected to
break down due to the strong fluctuation [171]. Aslamazov and Larkin (AL) [172] have
microscopically derived the contribution of the excess dc conductivity above Tc, which is
attributed to the Gaussian fluctuation of the amplitude of the order parameter.

�σ 3D
AL = e2

32h̄ξ(0)

1

ε1/2
, �σ 2D

AL = e2

16h̄d

1

ε
, (31)

where ε = (T − Tc)/Tc, ξ(0) is the zero-temperature correlation length, and d is the thickness
of the superconducting layers, respectively. Maki and Thompson (MT) pointed out that the
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pair breaking effect of QPs also contributed to the excess dc conductivity [173]. Thus, the
total excess dc conductivity is given by the sum of the AL term and the MT term. Schmidt
generalized the AL term for the ac conductivity above and below Tc by using the time-dependent
Ginzburg–Landau (TDGL) theory [174], while the generalization of the MT term for finite
frequencies has not been performed yet. Lehoczky and Briscoe [175] have investigated the
fluctuation effect on the microwave conductivity of Pb thin films experimentally, and found
that both the temperature and frequency dependences of the ac conductivity were in agreement
with the calculation of Schmidt.

It is interesting to explore the superconductivity fluctuation inside the critical region. In
conventional superconductors, however, it is known that the critical region was very small
close to Tc, so that it cannot be accessed easily in experiments. However, after the discovery of
high-Tc superconductivity, Fisher, Fisher, and Huse (FFH) [176] pointed out that the thermal
fluctuation effect is greatly enhanced in high-Tc cuprates, because of the short coherence
lengths, the high critical temperatures, and the strong 2D properties. This implies that the
critical region may be observable experimentally. For strongly type-II superconductors, they
predicted that the usual Gaussian regime described by the GL theory will cross over to a
critical regime of a weakly charged superfluid where the fluctuation of the order parameter is
described by the XY model. FFH also showed that, in such a critical regime, the ac fluctuating
conductivity scales as

σ(ω) ∼ ξ2−d+z S(ωξ z), (32)

where S(x) is a complex universal scaling function of the scaled frequency x ∼ ωξ z , ξ

is the correlation length diverging at Tc as ξ ∼ |T − Tc|−ν , d is the dimensionality of the
system, ν is the static critical exponent, and z is the dynamical critical exponent. Kamal et al
[177] measured λab(T ) of the optimally doped YBCO crystals, by using a split-ring resonator
operated at 0.9 GHz, and showed that λ(T )/λ(0) ∝ ε−y with y ≈ 1/3 over the wide range
10−3 < ε < 0.1. This result was excellently consistent with the critical behaviour of the 3D
XY model with ν = 2/3. They also confirmed that this critical behaviour was not affected by
the presence of small amounts of Zn impurities, as suggested by FFH.

In high-Tc cuprates, it was established experimentally that a sharp peak showed up in
the temperature dependence of σ1(T ) at around Tc [9] (see also in figure 4(b)). Horbach and
Saarloos [178] calculated the frequency-dependent AL term for 2D superconductors above
and below Tc, using the results of Schmidt, and showed that a fluctuation-induced sharp peak
appeared in σ1(T ) just at Tc. Thus, the sharp peak in σ ab

1 (T ) attracted much attention, since it
was possible that the critical fluctuations can be observed in it.

However, Olsson and Koch [179] pointed out that a distribution of Tc due to the sample
inhomogeneity also caused a spurious peak in σ1(T ) just below Tc. Anlage et al [180]
measured σ ab(T ) at 9.6 GHz of YBCO single crystals, which showed a clear T -linear
behaviour in �λab(T ) at low temperatures. They concluded that the 2D AL term was
quantitatively consistent with σ ab

1 (T ) for ε > 3 × 10−3 above Tc, while the behaviour of
σ ab

1 (T ) for 0 < ε < 3 × 10−3 was well described by an effective medium model, based on
a Gaussian distribution of Tc. In particular, they found that this simple model reproduced all
the experimental results very well, such as the peak height, the peak width, and the fact that
σ ab

1 (Tc) = σ ab
2 (Tc). These results suggested that the peak of σ ab

1 (Tc) was not attributable
to critical fluctuations at all. On the other hand, Waldram et al [181] came to an opposite
conclusion by investigating σ ab(T ) at 14, 25, and 36 GHz of BSCCO, Tl2Ba2CuO6, and Zn-
doped YBCO. They also analysed the peak of σ ab

1 (Tc) using a similar effective medium model,
although it was not based on the distribution of Tc, but on the conversion of normal current
to superconducting current in the critical regime. Since Anlage et al analysed the data in
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terms of the Tc distribution, we should be informed about why the data in [181] could not be
explained by the effective medium theory plus the distribution of Tc. However, we could not
know these in [181]. We should always keep in mind that the effect of inhomogeneity often
plays important roles in various aspects of the data in high-Tc cuprates. The peak of σ ab

1 (Tc)

should be analysed more carefully, together with more careful sample characterizations.
It is also noteworthy that the experimental ‘fact’ of σ1(Tc) = σ2(Tc) reported in these

papers might not be correct if a recent theory of Peligrad et al [182] is taken into account,
which pointed out the importance of the short-wavelength cut-off effect in the ac fluctuating
conductivity.

In addition, the asymmetric behaviour of the observed fluctuation above and below Tc

(2D Gaussian type above Tc, while 3D XY type below Tc) also seems puzzling, since the
critical behaviour is usually symmetric above and below the critical point. This suggests that
the temperature dependence of σ(T ) at a fixed frequency alone is not enough to analyse the
critical behaviour. Rather, both the temperature and frequency dependences of σ(ω, T ) should
be analysed using the scaling relation of equation (32). Dorsey [183] showed that the FFH
result was reduced to the AL-Schmidt results in the mean field theory (ν = 1/2, z = 2)
for purely relaxational dynamics (the so-called ‘model A’ in the Hohenberg and Halperin
classification [184]). He also argued that equation (32) should be correct even for a 2D
Kosterlitz–Thouless (KT) transition (2D XY model) [185]. Wickham and Dorsey also showed
that the scaling hypothesis of FFH was also verified for the relaxational XY model (ν = 2/3,
z ≈ 2) [186]. Thus, the scaling relation (32) is valid for various theoretical models. At Tc,
FFH showed that the magnitude |σ | and phase φ of σ(ω) must scale as

|σ(ω)| ∼ c|ω|−(2−d+z)/z, (33)

φσ = π

2

[
2 − d + z

z

]
, (34)

respectively.
As was described in section 3.1.2, the broadband technique developed by Booth et al is

a very powerful probe to check the scaling relation (32) directly [46]. They measured the
frequency-dependent σ(ω, T ) (45 MHz–45 GHz) of YBCO thin films above Tc. They found
that φσ ∼ (π/2) × (0.64 ± 0.1) at Tc, which suggests z = 2.65 ± 0.3 by assuming d = 3.
The plots of both |σ(ω)| and φσ (ω) for five different temperatures within 1 K above Tc were
found to be put onto a single curve with the choice of z = 2.65, and ν = 1.0. Although they
succeeded in obtaining both the static (ν) and dynamic (z) critical exponents, the estimated
values did not agree with the Gaussian behaviour (ν = 1/2, z = 2) or the 3D XY behaviour
with ν = 2/3. The reason for such discrepancies remained unresolved.

Corson et al [187] discovered the contrasting behaviour in the underdoped BSCCO thin
films in the frequency range between 100 and 600 GHz. They found that σ2(T, ω) measured
the phase-stiffness energy kBTθ (≡h̄ωσ2/σQ) below Tc, where σQ (≡e2/h̄d) was the quantum
conductivity of a stack of planar conductors with the interlayer spacing d . They showed that
Tθ (ω) was frequency independent below a crossover temperature, while it began to depend
strongly on frequency above the crossover temperature. This feature is quite reminiscent of
the phase-stiffness dynamics in the KT theory. Furthermore, the scaling behaviour of σ(T, ω)

for the temperature range from 64 to 91 K (Tc = 74 K) and the frequency range from 100 to
400 GHz also suggested that the system is strictly 2D and the scaled frequency � depends
exponentially on the inverse of the reduced temperature. These results strongly suggest that a
very broad temperature region above Tc is governed by the 2D XY type of critical fluctuation.

In summary, it seems that the dynamic critical fluctuations have been observed in several
experiments on σ(ω) study of the high-Tc cuprates. However, no consensus has been formed
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on the quantitative aspects, such as the numbers of critical exponents. Although the broadband
techniques which can obtain σ(ω, T ) is very powerful to explore the critical behaviour, only a
few results have been obtained by this technique. To settle the above-mentioned controversy,
more detailed information on σ(ω, T ) in sufficiently characterized samples is crucial for
various systems of high-Tc cuprates.

5. Flux flow and electronic structure of vortex core of cuprate superconductors

5.1. Flux flow and flux creep

In the so-called type-II superconductors, magnetic flux penetrates as quantized vortices above
the lower critical field, Bc1.6 Each vortex has the magnetic flux of �0 = h/2e, where �0 is
the flux quantum. Around the vortex, supercurrent circulates. In high-Tc cuprates, owing to
the strong two dimensionality, the circulating current around the quantized vortex is confined
in each CuO2 plane (pancake vortices) [188]. When the magnetic field is applied parallel to
the CuO2 plane, we can have coreless Josephson vortices [189, 190].

Vortices move under the presence of driving current density, j, since they suffer Lorentz
force density, fL,

fL = j × �0. (35)

When they move, energy is dissipated at the core (flux flow). Bardeen and Stephen (BS) [191]
were the first to calculate the energy dissipation by the flux flow. They assumed that the core
can be regarded as a normal metal, and found that the flux-flow resistivity, ρf , was ohmic, and
was given by

ρf = ρn
B

Bc2
, (36)

where ρn is the resistivity in the normal state7. In the presence of the vortex, equation (36) is
added to the usual quasiparticle resistivity.

If there is finite pinning of a vortex, the reactive part appears in the resistivity. A simple
equation of motion for the displacement of a vortex, u (r, t) at the point r, is

ηu̇ + κpu = feiωt , (37)

where f is the driving force with the magnitude of |j|�0, and

η = B�0/ρf (38)

is the viscosity of the vortex; κp is a pinning constant. This gives the resistivity, ρ, as

ρ = ρf

(
1

1 − i(ωp/ω)

)
, (39)

where

ωp = κ

η
(40)

is the crossover frequency that gives a crossover from the low-frequency reactive response to
the high-frequency dissipative (resistive) response. This crossover was beautifully observed
in conventional superconductors [193].

6 In this section, different from the previous sections, we represent B , not H , by the term ‘magnetic field’.
7 Recently, Kita calculated the flux-flow resistivity of a clean conventional (s-wave) superconductor, and obtained
that ρf is sublinear in B [192].
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At finite temperatures, thermal energy plays an essential role, in particular in high-Tc

superconductors. Thermal energy can make vortices escape from the pinning potential well
(flux creep) [194]. Application of the driving current introduces the unbalance between the left
going current and the right going current, and leads to the net creep velocity in one direction,
causing a finite voltage.

When all of these effects plus the contribution of QPs to the complex surface impedance
are included, simple analogies to the parallel or the series circuit are no longer valid. Within
the framework of the mean-field treatment for the intervortex interaction, such a calculation
was made by Coffey and Clem [195]. Their expression for the complex surface impedance
has become a starting point of the analysis of the experimental data of the ac response in the
mixed state, in many cases.

5.2. Microscopic electronic structure of vortex core in conventional superconductors

At the vortex core, the superconducting pair potential is weak. This means that there are
bound states in the vortex core. According to an exact analysis by Carrori, de Gennes, and
Matricon [196], a series of bound states exist, with their minimum energy of

Emin = 1

2
�E = 1

2

�2
0

EF
≡ 1

2
h̄ω0, (41)

where �E is the level spacing, �0 is half of the mean-field superconducting gap, and EF is the
Fermi energy; ω0 is the crossover frequency defined in equation (40), and was found to be equal
to the cyclotron frequency at the upper critical field, Bc2. For conventional superconductors
(CSCs), Emin is of the order of 1–10 µeV, which is hardly resolved by any experimental
techniques available [197]. Disorder introduces a finite lifetime τ ≡ h̄/δE for these bound
states, where δE is the level broadening. We can introduce an important microscopic parameter,
�, defined as

� ≡ �E

δE
= ω0τ, (42)

that dominates the QP behaviour in the vortex core.
It is important to note that � determines the flux flow resistivity (or viscosity, see

equation (38)). The vortex viscosity η, and the Hall viscosity αH, were calculated [198, 199]
for arbitrary values of ω0τ as

η = π h̄n
ω0τ

1 + (ω0τ )2
, (43)

αH = π h̄n
(ω0τ )2

1 + (ω0τ )2
, (44)

where n is the QP concentration. In the dirty limit, as is usually the case (ω0τ � 1),
η 	 π h̄nω0τ = Bc2�0/ρn, which is the BS expression [191]. In the opposite limit, ω0τ � 1
(superclean limit), the Hall effect dominates.

ρv = Bφ0

η + α2
H/η

≡ B�0

ηeff
, (45)

where ηeff is the effective viscosity. This means that the viscosity, obtained in the experiment
under the condition j = const, was ηeff . Equation (45) can be rewritten as

ηeff

πnh̄
= �. (46)

Therefore, we can determine the QP lifetime in the vortex core from the estimates of the
viscosity of the vortex in the mixed state.
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5.3. Electronic states of vortex core of high-Tc superconductor

5.3.1. General remarks. In HTSCs, the above-mentioned simple description of the vortex
core is incorrect for several reasons. First, the energy gap has d-wave symmetry [85]. Since
the amplitude of the gap at the node is zero, QPs are not localized in the vortex core but
extended along the node direction [200]. A theoretical calculation suggested that there were
no truly localized states in the vortex core in pure dx2−y2 superconductors [201]. On the other
hand, recent STM results in HTSCs showed that the DOS at a finite energy below the gap
�0 was enhanced near the centre of the vortex core [89, 202, 203]. Therefore, the presence
or the absence of localized states in the vortex core of HTSCs is still one of the central basic
questions.

The second characteristic feature of the vortex core in HTSCs is the semi-quantum nature of
the core. Again, the STM results suggests that kFξ 	 2–3, where ξ is the GL coherence length,
and kF is the Fermi velocity [89, 202, 203]. This means that the quasiclassical approximation
is no longer valid, and the physics of such a quantum core has not been developed up to now.
In particular, in such a highly anomalous situation, to the best of our knowledge, there have
been no rigorous calculations of the dynamic properties of vortices, in particular for d-wave
superconductors. So, the appearance of new effects may be expected in the dynamics of
vortices in HTSCs.

Within the framework of the quasiclassical approximation, Kopnin et al discussed the flux
flow of a vortex in d-wave superconductors [204]. They found that an extra dissipation exists
even for a superclean core. This means that equation (41) is not valid for the very clean core.
Physically, this is due to the Landau damping of the QPs in the vortex core. Thus, care should
be taken to analyse the flux flow data, even when they show a large dissipation for d-wave
superconductors.

5.3.2. Experiments on viscosity measurement. There have been many experimental efforts to
determine the vortex dynamics parameters of YBCO [10, 40, 51, 193, 205–208], and a review
of earlier results was provided in [10]. Among them, a report of [40] caused a debate. Matsuda
et al measured the microwave loss as a function of magnetic field up to 7 T at low temperatures,
and deduced a very large viscosity, which was two orders of magnitude larger than in CSCs.
This huge value was interpreted as evidence that the core of YBCO was in the superclean
regime, ω0τ � 1. However, their estimation of the viscosity was based on the assumption
that the crossover frequency, ωp, is much smaller than the measurement frequency, ω. Under
that assumption, they estimated the viscosity only from the data of the surface resistance,
Rs. In CSC, this assumption was reasonable since the characteristic crossover frequency
ωp ∼ 100 MHz [193]. In HTSC, however, the condition ω � ωp might not be satisfied.
Indeed, experimentally estimated values of the crossover frequency ωp at low temperatures in
previous reports [10, 205, 207] were on the order of ∼10 GHz. In such a case, the estimation
of ηeff from Rs alone leads to an incorrect result for η, and the measurement of Zs as a complex
quantity is essential.

To discuss the problem exactly, Tsuchiya et al [51] measured the complex surface
impedance as functions of magnetic field, frequency, and temperature up to higher magnetic
fields. Through the comparison with a theoretical calculation by Coffey and Clem [195],
they estimated ωp, η, and κ = ωpη (figure 9). Estimated values of ηeff at 10 K are
∼4–5 × 10−7 N s m−2. These values correspond to ω0τ ∼ 0.3–0.5. Since equation (42)
can be rewritten as � = (π/4)(1/kFξ)(�core/ξ) (�core is the mean free path of the QP in the
core), this means �core ∼ ξ (‘moderately clean’). The moderately clean nature of the vortex
core was found to be generic to other cuprate superconductors such as BSCCO [209, 223] and
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(a)

(b)

Figure 9. (a) Viscosity and (b) crossover frequency of YBCO obtained by the microwave surface
impedance measurement [51].

LSCO [210]. There, the moderately clean nature was also found to be robust on carrier doping.
It is worth noting that the direct measurement of the viscosity by applying a very high current
pulse in YBCO [211]was also consistent with the moderately clean nature of the core.

This is in sharp contrast to the QP mean free path in the Meissner state, as was discussed
in section 4, suggesting a rather different scattering mechanism dominates the QP in the core.
For QPs in the vortex core, it was suggested that the Andreev reflection at the core boundary
is important [199]. This mechanism might limit the mean free path of QP as ∼ξ .

Another significance of the moderately clean nature of the core is that a moving vortex
dissipates large energy, even for kFξ ∼ 1. On the other hand, the STM data suggest that
almost no dissipation will take place because there were almost no QP states in the core. How
to reconcile the moderately clean nature seen by microwave experiment and the extremely
quantum nature seen by the STM experiments is a serious problem. To approach the problem,
the introduction of disorder might be useful, since a definite difference was observed in the
induced QP DOS in the Meissner state among Zn-doped and Ni-doped BSCCO [89]. In a recent
viscosity measurement in impurity-doped YBCO, there was little difference in the microwave
dissipation of the vortex core between Zn-doped and Ni-doped crystals [212]. This suggests
that the QP DOS in pristine samples is rather large, so that the difference caused by Zn and by
Ni is masked, which is inconsistent with the QP DOS inferred by the STM data. Thus, some
revision might be necessary in the interpretation of the STM data. Alternatively, a quite new
mechanism of dissipation might exist for the flux flow of the quantum core. Nobody knows
about the dissipation of the quantum core, in particular, for d-wave superconductors. A fairly
large dissipation observed in microwave experiments might suggest that a new physics lies
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behind the motion of a quantum core [213]. Recently, the existence of other related ordered
structures, such as antiferromagnetism etc [214–218], was proposed in the vortex core. These
should affect various aspects of flux flow, both qualitatively and quantitatively, and might
resolve the above-mentioned discrepancy.

5.3.3. A new feature as superconductors with nodes in the gap. For anisotropic
superconductors with nodes in the gap, new effects were found also in the flux flow. In a heavy
electron suerpconductor, UPt3 [219], and a boron-carbide superconductor, YNi2B2C [220],
it was reported that the flux-flow resistivity, ρf , was enhanced at low fields, that means the
dependence of ρf as a function of magnetic field, B , ρf (B), showed an upward concave
behaviour. Since these two materials are considered to be anisotropic superconductors with
nodes, it is expected that the HTSCs also exhibit a similar behaviour. The data in YBCO [51]
exhibited that ρf was proportional to B at low field. However, since an exact value of Bc2 was
unknown, it could not be concluded whether ρf was enhanced or not. Matsuda et al [221]
investigated Zs(B) of the underdoped cuprate whose Bc2 could be known, at three different
frequencies. Using the Coffey–Clem formula [195], they extracted the ρf as a fitting parameter,
and found similar results as for UPt3 and in YNi2B2C. Even in this case, however, because of
the large crossover frequency, ωp, free flux flow was not achieved without using any models.
Recently, Umetsu et al [210] achieved free flux flow without using any models in LSCO, and
succeeded in obtaining the magnetic field dependence of ρf from the experimental data alone.
They found that, at high fields,

ρf ∝ Bα (47)

with α < 1, that is similar to the results obtained in other anisotropic SCs mentioned above.
Therefore, it is likely that the strange magnetic field dependence of ρf is a common feature
of anisotropic superconductors with gap nodes. This could be understood by the theory of
Kopnin and Volovic [222], where ρf was given as

ρf = B

ne〈ω0τ 〉 , (48)

where 〈 〉 denotes the average over the Fermi surface. Because of the existence of the nodes
in the order parameter, this could cause the enhanced ρf , also leading to the more gradual B
dependence at higher B .

Recently, the existence of a collective mode in the microwave frequency range was
predicted in unconventional superconductors with mixed symmetry order parameters [224].
Such a mode has not been observed in any experiments yet. This is another interesting problem.

In summary, flux flow of the vortex of HTSC has several new features, some of which
might open a new category of physics, such as the energy dissipation of the quantum core.
Theoretical investigation of the dynamics of such a quantum core is needed urgently.

6. Collective mode dynamics in cuprates

As was mentioned in the introductory section,microwave conductivity measurement was found
to be very effective to explore the dynamics of collective modes in the quantum condensate.
In particular, in strongly correlated materials, various kinds of interaction causes new ground
states [5]. In this section, we will introduce two examples of microwave studies to look for
the dynamics of the collective excitation characteristic of the strongly correlated systems in
the cuprate superconductors and related materials.
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(a)

(b)

Figure 10. In-plane dc resistivity (dashed curve) and microwave surface impedance at 50 GHz of
LNSCO as a function of temperature [226].

6.1. Can dynamics of charge stripes be seen?

The discovery of the static spin/charge stripe order in La2−x−y NdySrxCuO4 (LNSCO) by the
elastic neutron scattering [225] has revealed that doped holes in the antiferromagnetic (AF)
Mott insulators tend to segregate and form ‘charge stripes’, which are composite ordered
structures of charge and spin. The Nd substitution induces a structural phase transition at a
temperature Td2 (≈80 K) from the low-temperature orthorhombic (LTO) to the low-temperature
tetragonal (LTT) phase, which favours the static stripe ordering. Such periodic modulation
of charge and spin configurations is quite reminiscent of the CDW or the SDW. Thus, it is
expected that the dynamics of the stripe phase is considerably different from that of a Drude
metal. In order to explore such a possibility, the temperature and frequency dependences of the
in-plane conductivity of LNSCO (x = 0.10, 0.12, 0.15, y = 0.4) were investigated between
microwave and optical regions [226, 227]. The microwave conductivity was measured at 10,
50 and 100 GHz. As is shown in figure 10, both Rs and Xs agree with each other at each
temperature, showing the sample is in the Hagen–Rubens limit of the Drude conductivity.
Thus, σ1 	 1/ρ1 ∝ (1/Rs)

2 = (1/Xs)
2. The temperature dependence of σMW was similar to

that of σdc ≡ 1/ρdc, showing a small drop at Td2 (≈70 K) and a weak semiconducting behaviour
below Td2, while the far-infrared conductivity, σFIR, above 40 cm−1 increased with decreasing
temperature even below Td2. There was no strong frequency dependence in σMW between 10
and 100 GHz (≈0.3 and 3 cm−1, respectively) even below Td2. This observation ruled out
the possibility of the extra contribution of the pinned collective mode in this frequency range.
However, σ(T ) is very different between microwave and FIR regions, suggesting the existence
of some structure in the conductivity spectrum in the intermediate frequency region. A recent
optical study for LNSCO (x = 0.125, y = 0.6) showed that a finite-frequency peak in σFIR(ω)

was developed between 15 and 100 cm−1 below Td2 [228]. The appearance of this peak can
be attributed to the localization of charge carriers due to the reduction of the dimensionality
caused by the formation of the static charge stripes.
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In Nd-free La2−x Srx CuO4 (LSCO) and other orthorhombic cuprates, there was no
structural phase transition to the LTT phase, and it is believed that the spin/charge stripe order
fluctuates. It is also an interesting problem how the charge dynamics of fluctuating stripes show
up in the ac conductivity in these materials. According to the neutron scattering study [229],
the spin stripes (maybe also charge stripes) in LSCO with x < 0.06 are unidirectional and
extend along the diagonal Cu–Cu direction of the CuO2 planes (‘diagonal stripes’), while the
stripes in LSCO with x > 0.06 and LNSCO extend along the vertical (or horizontal) Cu–O–Cu
direction (‘vertical/horizontal stripes’) and rotate away from each other by 90◦ between the
neighbouring two CuO2 layers. Dumm et al [230] have investigated the infrared conductivity
of the lightly doped LSCO (x = 0.03, 0.04), and found that the Drude response seen above
80 K evolved into the finite-frequency peak centred at around 100 cm−1 below 80 K, which
was similar to the peak observed in LNSCO. Recent complex conductivity measurements on
LSCO films (x = 0.04–0.07) by the broadband techniques [48] also found that σ1(ω) between
45 and 12 GHz above about 100 K could be regarded as that in the Hagen–Rubens limit of the
Drude response, while σ1(ω) for x = 0.04 increased slightly with increasing frequency below
100 K, implying a possible existence of the maximum in the conductivity spectrum at a much
higher frequency region.

Thus, it is suggested that the charge dynamics in both the static and dynamical stripe
phases is rather similar to that of the ordinary Drude metal, while the finite-frequency peak
emerges in the conductivity spectrum in the localization regime at low temperatures, which
seems to be a generic feature of low-dimensional disordered conductors.

6.2. A pinned collective mode in a two-leg ladder system

The hole-doped spin ladder system is a good reference to the high-Tc cuprates, since
theories predicted the opening of the spin gap in even-leg spin ladders and the emergence of
superconductivity by hole doping on such ladders [231]. Indeed, superconductivity appeared in
Sr14−x CaxCu24O41 (SCCO) along this scenario [232]. This material is a quasi-one-dimensional
(Q1D) system, which contains planes of Cu2O3 two-leg ladders, planes of CuO2 chains, and
(Sr, Ca) layers. Since the average valence of Cu is +2.25 in the Ca-free material, holes are
intrinsically doped in this compound. The isovalent substitution of Ca for Sr makes these
self-doped holes redistribute from the CuO2 chains to the Cu2O3 ladders, which effectively
enables the hole doping on the two-leg ladders [233].

The charge dynamics along both the ladder (c-axis) and the rung (a-axis) directions of
SCCO has been investigated in the microwave and millimetre wave regions between 30 and
100 GHz (figure 11) [234]. For the slightly hole-doped region (x = 0, 1, and 3), a small
and narrow conductivity peak, centred around �0/2π ∼ 50 GHz (∼2.5 K), was observed in
the frequency dependence of the c-axis conductivity σ c

1 (T, ω) below a temperature T ∗, while
there was no sign of a similar structure in the a-axis conductivity, σ a

1 (T, ω). Although T ∗
systematically decreased from 170 to 30 K with increasing x (from 0 to 3), the resonance-
like conductivity peak (h̄�0 ∼ 2.5 K) can be observed up to moderately high temperatures
(h̄�0 � kBT ∗). Thus, the peak in σ c

1 cannot be attributed to any single-particle excitations.
Instead, it should be attributed to some collective excitation, such as a pinned phason mode
in the CDW and the SDW states. The existence of such a pinned collective mode was also
suggested by succeeding experiments including the nonlinear dc conduction [234–237], the
dielectric relaxation in the radio frequency region [235, 236, 238], and the electronic Raman
scattering [236, 239].

Unfortunately, the origin of this collective mode has not been specified yet. However, the
possibility of a charge-ordered state in the CuO2 chain layers can be ruled out, because there
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Figure 11. Microwave conductivity of a spin ladder, Sr14Cu24O41 as a function of frequency.
Different open marks correspond to σ c

1 in different samples, and the closed marks represent σ a
1 .

The solid curve is a fit to a Lorentzian. The inset represents the dc nonlinear conductivity of the
same material [234].

was no giant relaxation in the dielectric function of La3Sr3Ca8Cu24O41, which had carriers
only on the chain [240]. Therefore, the observed pinned collective mode should be associated
with the charge-ordered state of doped holes on the ladder layers. Kitano et al estimated
that the enhancement of the effective mass, m∗, was negligibly small, by relating the pinning
frequency �0 to the threshold field of the nonlinear dc conduction, E0, in a single harmonic
oscillator model [234]. Vuletić et al also concluded that the enhancement of m∗ was only
20–50, by using an expression developed by Littlewood [241], which connects �0 with the
low-frequency dielectric relaxation time, τ0 [238]. These results strongly suggest that the
charge excitation in this material does not accompany lattice distortions, in contrast to the case
of the conventional CDW materials. Thus, it is expected that a possible lattice distortion due
to the charge-ordered state is too small to be observed by x-ray scattering.

To clarify the origin of the collective mode, it is also important to study the evolution
of the collective excitations with Ca doping. The nonlinear dc conduction due to the sliding
motion of the collective mode was found to disappear easily by the carrier doping [237]. On
the other hand, the pinned collective mode in the microwave region was observed for x = 0–3.
The giant dielectric relaxation in the radio-frequency region was also observed for x = 0–9
[238]. Interestingly, the temperature below which the giant dielectric relaxation was observed
decreased with Ca doping systematically, similar to T ∗. All these features may suggest that
the charge-ordered state is unstable with the hole doping on ladders, while a finite spin gap
remains to be opened even for x > 10 [242, 243].

However, at higher hole dopings (x � 8), there is still a debate. Osafune et al discovered
a different conductivity peak at ∼100 cm−1 for x = 8, which was interpreted as another
collective mode of hole pairs [244]. Recently, Vuletić et al proposed that it could be attributed
to the opening of the CDW gap, based on the fact that the gap was suppressed systematically
by the hole doping from ∼1000 cm−1 (x = 0) to ∼100 cm−1 (x = 8) [238]. On the other
hand, a recent Raman scattering study reported that a fingerprint of the pinned collective mode
was observed up to ∼600 K even for x = 12, implying that the quasiparticle gap was not
suppressed by the hole doping [239]. To resolve the controversy, another interpretation was
proposed, where this feature can be regarded as a generic feature of low-dimensional disordered
conductors, similar to a finite-frequency peak in LNSCO and LSCO [228, 230].
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To answer these questions clearly, detailed studies of conductivity in the microwave region
are crucial even for these Ca-doped materials. Unfortunately, however, it becomes quite
difficult to obtain σMW at higher hole dopings, since we require the analysis in the crossover
region between SDR and DPR, as was discussed in section 3.2. We have investigated the
microwave response at 35, 50, and 98 GHz for the x = 12 material, placed at the microwave
electric field parallel to the c axis (Eω ‖ c). In contrast to the case of x = 0–3, the so-
called depolarization peak, which is characteristic of the DPR, was no longer seen down to
∼5 K. We can make a rough estimate of the magnitude of the electric conductivity of unknown
materials by the comparison of the microwave loss, �(1/2Q) at Eω with that at the microwave
magnetic field Hω [245]. We found that �(1/2Q) at Hω ⊥ ac plane was sufficiently larger
than �(1/2Q) at Eω ‖ c. This suggests that the real part of σ c

MW for x = 12 is much larger than
that for x = 0–3, similar to the behaviour of σdc. Although it is difficult to discuss the details
of the frequency dependence of σMW, a significant feature is that the collective excitation has
not been observed between 30 and 100 GHz in the x = 12 material.

In summary, the collective charge excitation in these spin ladder materials is novel in the
sense that this could be a new type of charge excitation that is characteristic of the strongly
correlated low-dimensional systems. This surely deserves further studies. In addition to
applying various new types of experiment, improvements in the microwave measurement
techniques and the method of analysis are needed urgently.

7. Conclusion

In this article, recent studies of electromagnetic response at microwave- and millimetre-
wave frequencies of the high-temperature cuprate superconductors and related materials were
reviewed, with special interest in terms of the estimation of the complex conductivity in a
wide range of materials with various conductivity magnitudes. Concerning the application of
this technique to superconductors, thanks to the HTSC, our understanding of unconventional
superconductivity achieved incredible progress in various aspects; each of them has been
described above. At the same time, it also became clear that many issues have been remained
unsettled, in spite of considerable efforts by many different groups. The above reviewed
histories told us that all of the three important aspects of the research are inevitable: that
is, the fabrication of samples (bulk single crystals or single-crystalline films) with very high
quality, the development of new techniques with better resolution, sensitivity, and stability,
and complete systematic study in a wide range of materials and doping. The microwave
measurement techniques, when applied to other categories of materials, such as the ones
undergoing the metal-to-insulator transition, are not well established. For this to be a more
powerful tool, comprehensive approaches including a large-scale computer simulation, such
as detailed analysis of electromagnetic field distribution for samples with arbitrary shape, etc
might be necessary.
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